ON CERTAIN PROBABILITY DISTRIBUTIONS ARISING FROM A SEQUENCE OF OBSERVATIONS AND THEIR APPLICATIONS

By P. V. Krishna Iyer
Defence Science Laboratory
AND
B. N. Singh
Banaras Hindu University*

Introduction

The distributions of a number of statistics defined for a sequence of n observations $x_{1}, x_{2} \ldots x_{n}$ taking any of the values $\theta_{1}, \theta_{2}, \theta_{3} \ldots \theta_{k}$ with fixed or varying probabilities have been considered by Krishna Iyer (1948-54), Mood (1940) and others. These distributions refer mainly to statistics obtained by considering the relations between adjoining observations as in the case of a simple Markoff chain. For a binomial sequence, Singh (1952) has discussed some distributions based on the relationship between three adjacent observations. Similar distributions of a wider nature have been discussed by Kendall (1945), Wilcoxon (1945), Mann and Whitney (1947), Rijkoort (1952), Kruskall (1952), Mood (1940), Stuart (1955) and others. Kendall's (1945) rank correlation τ is based on $(x-y)$ where x and y are the number of positive and negative differences between any two pairs of observations for a random sequence drawn from a continuous distribution. For two random samples x and y from a continuous distribution $F(x)$, Mann and Whitney (1947) have considered the U-statistic. This statistic is defined as the number of times that the y 's precede the x 's when the two samples x and y are pooled together and arranged in ascending or descending order. Another statistic T , closely related to U, was given by Wilcoxon (1945) earlier, where T represents the sum of the ranks of y 's when the two samples taken together are arranged in ascending order. It has been shown by Mann and Whitney that

$$
U=m n+\frac{m(m+1)}{2}-T
$$

[^0]where n and m are the sizes of the samples x and y. Whitney (1951) has extended the U-statistic for three samples, x, y and z by introducing the statistics U and V, where U and V represent the number of times that y and z precede those of x when the three samples are pooled and arranged in ascending order. Rijkoort (1952) generalized Wilcoxon's test to k samples by taking the statistic
$$
s=\Sigma\left(s_{i}-n_{i} \bar{r}\right)^{2}
$$
where $\bar{r}=\frac{1}{2}\left(\Sigma n_{i}+1\right)=\frac{1}{2}(n+1), s_{i}$ is equal to the sum of the ranks of $x_{i} ;$ and n_{i} is the size of the sample x_{i}. Kruskall and Wallis (1952) also have considered similar statistics. Mood (1954) has used a similar method for testing the difference in the dispersion of two samples x and y. This test depends on
$$
W=\sum_{i=1}^{n}\left(r_{i}-\frac{m+n}{2}+1\right)^{2}
$$
where r_{i} is the rank of the i th observation in y when x and y are arranged together in order of magnitude.

It would be seen that the work done so far for a sequence of observations related mainly to distributions based on the relations between either adjoining pairs or all possible pairs of observations from a continuous population. The purpose of this paper is to investigate the possibility of developing non-parametric tests more powerful than the existing ones by studying the distributions of a number of new statistics arising from a sequence of observations from a continuous or discrete population by taking the differences between all pairs separated by r or less number of observations. The value of these statistics for testing the randomness of a sequence of observations or for examining whether two or more samples belong to the same parent population has been investigated by working out the power and the efficiency of the various tests arising from this investigation.

2. Differences between Three Successive Observations

A. Positive or negative differences

A given sequence of n observations can be considered as $(n-2)$ sets of three successive values. Each of these sets gives three differences which are either positive, negative or zero. By considering the number of positive or negative differences in the $(n-2)$ sets we shall define two statistics, W_{3} and T_{3} as follows:-

$$
\begin{aligned}
& W_{3}=X_{1}+X_{2} \\
& T_{3}=X_{1}^{\prime}+X_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
X_{1}=(12)+2(23) & +2(34)+\ldots \\
& +2(n-2, n-1)+(n-1, n) \\
X_{1}^{\prime}=(12)+(23)+ & (34)+\ldots \\
& +(n-2, n-1)+(n-1, n) \\
X_{2}=(13)+(24)+ & (35)+\ldots+(n-2, n)
\end{aligned}
$$

and ($r s$) represents the sign of the difference between the r-th and the s-th observations of the sequence and is assigned the scores 1 or 0 according as $\left(x_{r}-x_{s}\right)$ is positive or otherwise when the distribution considered is that for positive differences. While considering the distribution for negative differences the scores assigned to ($x_{r}-x_{s}$) are -1 or 0 according as $\left(x_{r}-\dot{x}_{s}\right)$ is negative or otherwise. It may be noted that W_{3} represents the total number of positive or negative differences arising from the ($n-2$) moving sets or blocks of 3 consecutive observations. The differences considered in the s-th set are those between the observations $(s, s+1),(s+1, s+2)$ and $(s, s+2)$. T_{3} represents the total number of positive or negative differences between any two observations r and s such that $s-r \leqslant 2$. The probability and the moment generating functions (P.G.F. and M.G.F.) for the distributions of W_{3} and T_{3} obtained by the methods developed by Iyer (1950) are given below:-
(a) P.G.F. and cumulants of W_{3} for two and three characters.-

Assuming $\phi(n)$ to be the P.G.F. of W_{3} for n observations which take the values θ_{1} and θ_{2} with fixed probabilities p and q, the following recurrence relationship holds good for this distribution:-

$$
\begin{align*}
& \phi(n+3)-\phi(n+2)+p q \cdot\left(1-\xi^{2}\right) \phi(n+1) \\
& \quad+p q \xi^{2}(1-\xi) \phi(n)-p^{2} q^{2} \dot{\xi}^{2}(1-\xi)^{2} \phi(n-1)=0 \tag{2.1}
\end{align*}
$$

where

$$
\phi(n)=p(n, 0)+\xi p(n, 1)+\xi^{2} p(n, 2)+\ldots
$$

and $p(n, r)$ is the probability of getting r positive or negative differences for W_{3} from n observations. The distribution of W_{3} for $n \geqslant 5$ can be obtained in succession from those of the lower values, viz., $n=4,3,2$ which are actually determined by examining the different possible arrangements.

The difference equation for the M.G.F. is the same as (2.1) with ξ replaced by e^{t}. Thus the M.G.F. for W_{3} is

$$
\begin{align*}
& M(n+3)-M(n+2)+p q\left(1-e^{2 t}\right) M(n+1) \\
& \quad+p q e^{2 t}\left(1-e^{t}\right) M(n)-p^{2} q^{2} e^{2 t}\left(1-e^{t}\right)^{2} M(n-1)=0 \tag{2.2}
\end{align*}
$$

where

$$
M(n)=1+t \mu_{1}^{\prime}(n)+\frac{t^{2}}{2!} \mu_{2}^{\prime}(n)+\frac{t^{3}}{3!} \mu_{3}^{\prime}(n)+\ldots
$$

The solution of (2.2) is given by

$$
\begin{equation*}
M(n)=c_{1} a_{1}^{n}+c_{2} a_{2}^{n}+c_{3} \alpha_{3}^{n}+c_{4} a_{4}^{n} \tag{2.3}
\end{equation*}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}$ are the roots of the characteristic equation of the recurrence relation (2.2), viz.,

$$
\begin{align*}
& x^{4}-x^{3}+p q\left(1-e^{2 t}\right)+p q e^{2 t}\left(1-e^{t}\right) \\
&-p^{2} q^{2} e^{2 t}\left(1-e^{t}\right)^{2}=0 \tag{2.4}
\end{align*}
$$

and the c 's are constants determined by equating (2.3) to the actual M.G.F.'s for $n=4,3,2$ and 1 .

When $t=0$ (2.4) has all the roots, excepting one, equal to zero. If this non-zero root is a_{1}, then

$$
\begin{aligned}
& \dot{M}(n)= c_{1} a_{1}^{n}\left\{1+\frac{c_{2}}{c_{1}}\left(\frac{a_{2}}{a_{1}}\right)^{n}\right. \\
&+\frac{c_{3}}{c_{1}}\left(\frac{a_{3}}{a_{1}}\right)^{n} \\
&\left.+\frac{c_{4}}{c_{1}}\left(\frac{a_{4}}{a_{1}}\right)^{n}\right\} \\
&= c_{1} a_{1}^{n} \beta \text { say. }
\end{aligned}
$$

Taking the logarithm of $M(n)$, we get the cumulants of W_{3}.
The r-th cumulant, κ_{r}, is equal to

$$
\begin{align*}
{\left[\frac{d^{r}}{d t^{r}} \log M_{n}\right]_{t=0}=\left[\frac{d^{r}}{d t^{r}} \log c_{1}\right]_{t=0} } & +n\left[\frac{d^{r}}{d t^{r}} \log a_{1}\right]_{t=0} \\
& +\left[\frac{d^{r}}{d t^{r}} \log \beta\right]_{t=0} \tag{2.5}
\end{align*}
$$

It can be easily seen that

$$
\left[\frac{d^{r}}{d t^{r}} \log \beta\right]_{t=0}=0
$$

so long as $r<n$, as α_{2}, a_{3} and α_{4} are zero when $t=0$. Therefore (2.5) reduces to

$$
\kappa_{r}=\left[\frac{d^{r}}{d t^{r}} \log c_{1}\right]_{t=0}+n\left[\frac{d^{r}}{d t^{r}} \log \alpha_{1}\right]_{t=0}
$$

When n is large, the contribution of c_{1} will be negligible compared to n and therefore

$$
\kappa_{r} \sim n\left[\frac{d^{r}}{d t^{r}} \log \alpha_{1}\right]_{t=0}
$$

Now

$$
\left[\frac{d^{r}}{d t^{r}} \log a_{1}\right]_{t=0}
$$

can be obtained by differentiating the characteristic equation of the M.G.F. r times with respect to t as has been indicated in a previous publication by Krishna Iyer and Kapur (1955). This aspect is being discussed in greater detail in another paper to be published shortly in this journal. It may also be noted that by taking $\left(d^{r} / d \xi^{r} \log a_{1}\right)$ we get the factorial cumulants $\kappa_{[r]}$ and the relation between the factorial cumulants and the ordinary cumulants is given by

$$
\kappa_{r}=\kappa_{[r]}+\kappa_{[r-1]} \Delta O^{r}+\kappa_{[r-2]} \Delta^{2} O^{r}+\ldots+\kappa_{[r-s]} \Delta^{s} O^{r}+\ldots
$$

where $\Delta^{s} O^{r}$ is the s-th difference of O.
For three characters the recurrence relationship for the P.G.F. of W_{3} is

$$
\begin{align*}
& {\left[E^{9}-E^{8}+E^{7}\left(1-\xi^{2}\right) \Sigma p_{4} p_{j}+E^{6}(1-\xi)\left\{\xi^{2} \Sigma p_{i} p_{j}\right.\right.} \\
& \left.\quad-p_{1} p_{2} p_{3}\left(1+2 \xi+3 \xi^{2}+\xi^{3}\right)(1-\xi)\right\}-E^{5} \xi^{2}(1-\xi)^{2} \\
& \quad \times\left\{\Sigma_{i}{ }^{2} p_{j}{ }^{2}+p_{1} p_{2} p_{3}\left(2+2 \xi+\xi^{2}\right)\right\}-E^{4} \xi^{2}(1-\xi)^{2} p_{1} p_{2} p_{3} \\
& \quad \times\left\{\xi^{2}-\left(1-\xi^{3}\right) \Sigma p_{i} p_{3}\right\}+E^{3} \xi^{4}(1-\xi)^{3} p_{1} p_{2} p_{3}\left\{\Sigma_{i} p_{j}\right. \\
& \left.\quad+\xi(1-\xi) p_{1} p_{2} p_{3}\right\}-E^{2} \xi^{4}(1-\xi)^{4}\left(1+\xi^{2}\right) p_{1}{ }^{2} p_{2}{ }^{2} p_{3}{ }^{2} \\
& \quad-E \xi^{6}(1-\xi)^{5} p_{1}{ }^{2} p_{2}{ }^{2} p_{3}{ }^{2} \Sigma p_{i} p_{j} \\
& \left.\quad+\xi^{6}(1-\xi)^{6} \dot{p}_{1}{ }^{3} p_{2}{ }^{2} p_{3}{ }^{3}\right] \phi(n-1)=0 \tag{2.6}
\end{align*}
$$

where E stands for the usual operator defined by

$$
\begin{aligned}
& E \phi(n)=\phi(n+1) \\
& \Sigma p_{i} p_{j}=p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}
\end{aligned}
$$

and

$$
\Sigma p_{i}^{2} p_{j}^{2}=p_{1}^{2} p_{2}^{2}+p_{2}^{2} p_{3}^{2}+p_{1}^{2} p_{3}^{2}
$$

The first four asymptotic cumulants for two characters calculated by the method given above are noted below:-

$$
\left.\begin{array}{l}
\kappa_{1}=3 n p q ; \kappa_{2}=n p q(9-31 p q) \tag{2.7}\\
\kappa_{3}=n p q\left(27-297 p q+732 p^{2} q^{2}\right) \\
\kappa_{4}=n p q\left(81-2197 p q+14376 p^{2} q^{2}-27474 p^{3} q^{3}\right)
\end{array}\right\}
$$

132 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS
The exact expressions for κ_{1}, κ_{2} and κ_{3} for any number of characters for free sampling (i.e., fixed probabilities) are as follows:-

$$
\left.\begin{array}{rl}
\kappa_{1}= & 3(n-2) a_{2} \tag{2.8}\\
\kappa_{2}=(9 n-22) a_{2}+(22 n-70) a_{3}-(31 n-92) a_{2}^{2} \\
\kappa_{3}= & 6(15 n-52) A+54(3 n-14) B \\
& +3(3 n-8) C+6(3 n-8) \cdot D \\
& +24(n-3) F+12(3 n-11) G \\
& +48(n-4) H+12(n-3) N
\end{array}\right\}
$$

where

$$
\begin{aligned}
& a_{2}=\Sigma p_{i} p_{j}, a_{3}=\Sigma p_{i} p_{j} p_{k}, \quad a_{4}=\Sigma p_{i} p_{j} p_{k} p_{l}, \\
& A=\left(1-2 a_{2}\right)\left(a_{3}-a_{2}\right), B=a_{4}-2 a_{3} a_{2}+a_{2}{ }^{3} \\
& C=a_{2}\left(1-a_{2}\right)\left(1-2 a_{2}\right), D=\left(1-2 a_{2}\right)\left(a_{2}+a_{3}-2 a_{2}{ }^{2}\right) \\
& F=a_{3}-a_{2}\left(a_{2}+2 a_{3}\right)+2 a_{2}{ }^{3} \\
& G=\left(\Sigma p_{i}{ }^{2} p_{j} p_{k}+\Sigma p_{i} p_{j} p_{k}{ }^{2}+4 a_{4}\right)-a_{2}\left(\Sigma p_{i}{ }^{2} p_{j}+\Sigma p_{i} p_{j}{ }^{2}\right. \\
& \left.\quad+8 a_{3}\right)+4 a_{2}^{3} \\
& H=\left(\Sigma p_{i}{ }^{2} p_{j} p_{k}+2 \Sigma p_{i} p_{j}{ }^{2} p_{k}+\Sigma p_{i} p_{i} p_{k}{ }^{2}+6 a_{4}\right) \\
& \quad-a_{2}\left(\Sigma p_{i}{ }^{2} p_{j}+\Sigma p_{i} p_{j}^{2}+6 a_{3}\right)+2 a_{2}^{3} \\
& N=\left(\Sigma p_{i}{ }^{2} p_{j}{ }^{2}+2 \Sigma p_{i}{ }^{2} p_{i} p_{k}+\Sigma p_{i} p_{j}{ }^{2} p_{k}+2 \Sigma p_{i} p_{j} p_{k}{ }^{2}+5 a_{4}\right) \\
& \quad-a_{2}\left(\Sigma p_{i}{ }^{2} p_{j}+\Sigma p_{i} p_{j}^{2}+4 a_{3}\right)+a_{2}^{3}
\end{aligned}
$$

By putting $a_{2}=\frac{1}{2}$ and $a_{3}=1 / 6$ in the above expressions, we obtain the cumulants of W_{3} for a sequence of observations from a continuous population.

For non-free sampling, i.e., when the number of observations taking the values of $\theta_{1}, \theta_{2} \ldots \theta_{k}$ is $n_{1}, n_{2}, \ldots . n_{k}$ respectively such that $\Sigma n_{i}=n, \kappa_{1}$ and κ_{2} reduce to

$$
\left.\begin{array}{rl}
\kappa_{1}=3(n-2) & \frac{\sum n_{i} n_{j}}{n(n-1)} \\
\kappa_{2}=(9 n & -22) \frac{\sum n_{i} n_{j}}{n(n-1)} \\
& +\left(9 n^{2}-67 n-128\right) \frac{\Sigma n_{i}\left(n_{i}-1\right) n_{j}\left(n_{j}-1\right)}{n(n-1)(n-2)(n-3)} \tag{2.9}\\
& +2\left(9 n^{2}-56 n+93\right) \frac{\sum n_{i} n_{j} n_{k}}{n(n-1)(n-2)} \\
& -2\left(9 n^{2}-67 n+128\right) \frac{\sum n_{i} n_{j} n_{k} n_{l}}{n(n-1)(n-2)(n-3)} \\
& -\left[3(n-2) \frac{\sum n_{i} n_{j}}{n(n-1)}\right]^{2}
\end{array}\right)
$$

The above values have been obtained from the uncorrected moments about the origin zero by substituting

$$
\begin{equation*}
\frac{n_{i}^{[r]} n_{n_{j}}^{[8]} \cdot n_{k}[t]}{\left.n^{[r+8+q+1+} \cdots\right]} \text { for } p_{i}{ }^{r} p_{j}{ }^{s} p_{k}{ }^{t} \ldots \tag{2.10}
\end{equation*}
$$

in the moments about the origin zero for free sampling.
(b) P.G.F. and cumulants for T_{3}.-The recurrence relation for the P.G.F. of the distribution. of T_{3} for two characters reduces to

$$
\begin{align*}
& \phi(n+3)-\phi(n+2)+p q(1-\xi) \phi(n+1) \\
& \quad+p q \xi(1-\xi) \phi(n)-p^{2} q^{2} \xi(1-\xi)^{2} \phi(n-1)=0 \tag{2.11}
\end{align*}
$$

The asymptotic values of the first four cumulants are

$$
\left.\begin{array}{l}
\kappa_{1}=2 n p q, \kappa_{2}=2 n p q(2-7 p q) \\
\kappa_{3}=2 n p q\left(4-45 p q+113 p^{2} q^{2}\right) \tag{2.12}\\
\kappa_{4}=2 n p q\left(8-223 p q+1554 p^{2} q^{2}-2910 p^{3} q^{3}\right)
\end{array}\right\}
$$

The actual values of κ_{1} and κ_{2} for k characters or variables are as under:-

$$
\left.\begin{array}{l}
\kappa_{1}=(2 n-3) a_{2} \tag{2.13}\\
\kappa_{2}=(4 n-7) a_{2}+2(5 n-14) a_{3}-7(2 n-5) a_{2}^{2}
\end{array}\right\}
$$

For non-free sampling κ_{1} and κ_{2} reduce to

$$
\begin{align*}
\kappa_{1}=(2 n & -3) \frac{\sum n_{i} n_{j}}{n(n-1)} \\
\kappa_{2}=(4 n & -7) \frac{\sum n_{i} n_{j}}{n(n-1)} \\
& +\left(4 n^{2}-26 n+44\right) \frac{\sum n_{i}[2] n_{j}{ }^{[2]}}{n^{[4]}} \\
\therefore & +2\left(4 n^{2}-21 n+30\right) \frac{\sum n_{i} n_{j} n_{k}}{n^{[3]}} \tag{2.14}\\
& -2\left(4 n^{2}-26 n+44\right) \frac{\sum n_{i} n_{i} n_{i} n_{1}}{n^{[4]}} \\
& \div\left[(2 n-3) \frac{\sum n_{i} n_{j}}{n(n-1)}\right]^{2} .
\end{align*}
$$

B. Positive and negative differences

Assuming $W_{3}{ }^{\prime}$ and $T_{3}{ }^{\prime}$ to be the statistics corresponding to W_{3} and T_{3} obtained by taking positive and negative differences from three successive observations, the P.G.F.'s and the cumulants of the two distributions for two or more characters are noted below:-
P.G.F. and cumulants of $\mathrm{W}_{3}{ }^{\prime}$ for two and three characters.-For two characters the recurrence relationship reduces to

$$
\begin{gather*}
\phi(n+3)-\phi(n+2)+p q\left(1-\xi^{4}\right) \phi(n+1)+p q \xi^{4}\left(1-\xi^{2}\right) \phi(n \\
-p^{2} q^{2} \xi^{4}\left(1-\xi^{2}\right)^{2} \phi(n-1)=0 \tag{2.15}
\end{gather*}
$$

For three characters the recurrence relation is given by a 9×9 determinant which on expansion reduces to

$$
\begin{align*}
& {\left[E^{9}-E^{8}+E^{7}\left(1-\xi^{4}\right) a_{2}+E^{6}\left\{\xi^{4}\left(1-\xi^{2}\right) a_{2}-\left(1-3 \xi^{6}\right.\right.\right.} \\
& \left.\left.\quad+2 \xi^{9}\right) p_{1} p_{2} p_{3}\right\}-E^{5} . \xi^{4}(1-\xi)\left\{\left(1-\xi^{2}\right)(1+\xi) D_{i}{ }^{2} p_{j}{ }^{2}\right. \\
& \left.\quad+\left(2+2 \xi-\xi^{4}-3 \xi^{5}\right) p_{1} p_{2} p_{3}\right\}-E^{4} \xi^{4}(1-\xi)^{2} p_{1} p_{2} p_{3} \\
& \quad \times\left\{\xi^{4}(1+2 \xi)-(1+\xi)\left(1+\xi-2 \xi^{5}\right) a_{2}\right\}+E^{3} . \xi^{8} \\
& \quad \times(1-\xi)^{3} p_{1} p_{2} p_{3}\left\{(1+\xi)(1+2 \xi) a_{2}+\xi\left(2+3 \xi+3 \xi^{2}\right.\right. \\
& \left.\quad-\xi^{3}(1+\xi)^{3} p_{1} p_{2} p_{3}\right\} \\
& \quad-E^{2} \xi^{8}(1+2 \xi)(1-\xi)^{2}\left(1-\xi^{2}\right)^{2}\left(1-\xi^{4}\right) p_{1}{ }^{2} p_{2}{ }^{2} p_{3}{ }^{2} \\
& \quad-E \xi^{12}(1-\xi)^{4}\left(1-\xi^{2}\right)(1+2 \xi)^{2} p_{1}{ }^{2} p_{2}{ }^{2} p_{3}{ }^{2} a_{2} \\
& \left.\quad+\xi^{12}(1-\xi)^{6}(1+2 \xi)^{3} p_{1}{ }^{3} p_{2}{ }^{3} p_{3}{ }^{3}\right] \phi(n-1)=0 \tag{2.16}
\end{align*}
$$

where

$$
a_{2}=p_{1} p_{2}+p_{1} p_{3}+p_{2} p_{3}
$$

The asymptotic values of the first four cumulants for two characters are as follows:-

$$
\left.\begin{array}{l}
\kappa_{1}=6 n p q, \kappa_{2}=4 n p q(9-31 p q) \tag{2.17}\\
\kappa_{3}=8 n p q\left(27-302 p q+732 p^{2} q^{2}\right) \\
\kappa_{4}=16 n p q\left(81-2707 p q+16692 p^{2} q^{2}-31986 p^{3} q^{3}\right)
\end{array}\right\}
$$

The actual values of the first and second cumulants for any number of variables or characters are given below for infinite or free sampling:

$$
\left.\begin{array}{l}
\kappa_{1}=6(n-2) a_{2} \tag{2.18}\\
\kappa_{2}=4(9 n-26) a_{2}+6(13 n-40) a_{3}-4(31 n-92) a_{2}^{2}
\end{array}\right\}
$$

For finite sampling the above formulæ reduce to

$$
\begin{align*}
& \kappa_{1}=6(n-2) \frac{\Sigma n_{i} n_{j}}{n(n-1)} \\
& \kappa_{2}=4(9 n-26) \frac{\sum n_{i} n_{j}}{n(n-1)}+2\left(36 n^{2}-229 n\right. \\
&+392) \frac{\sum n_{i} n_{i} n_{i b}}{n^{[3]}} \\
&+\left(36 n^{2}-268 n+512\right) \frac{\sum n_{i} n_{i}^{[2]} n_{j}[2]}{n^{[4]}} \\
&+2\left(36 n^{2}-268 n+512\right) \frac{\Sigma n_{i} n_{i} n_{i} n_{i}}{n^{[4]}} \\
&-\left[6(n-2) \frac{\Sigma n_{i} n_{j}}{n(n-1)}\right]^{2}
\end{align*}
$$

P.G.F. and cumulants of $\mathrm{T}_{3}{ }^{\prime}$

The recurrence relation for two characters for T_{3} is given by

$$
\begin{gather*}
\phi(n+3)-\phi(n+2)+p q\left(1-\xi^{2}\right) \phi(n+1) \\
+p q \xi^{2}\left(1-\xi^{2}\right) \phi(n)-p^{2} q^{2} \xi^{2}\left(1-\xi^{2}\right)^{2} \phi(n-1)=0
\end{gather*}
$$

The first four asymptotic values of the cumulants for two characters reduce to

$$
\left.\begin{array}{l}
\kappa_{1}=4 n p q, \kappa_{2}=8 n p q(2-7 p q) \\
\kappa_{3}=16 n p q\left(4-45 p q+113 p^{2} q^{2}\right) \\
\kappa_{4}=32 n p q\left(8-223 p q+1494 p^{2} q^{2}-2910 p^{3} q^{3}\right)
\end{array}\right\}
$$

The actual first and second cumulants of $T_{3}{ }^{\prime}$ for free sampling for k characters are

$$
\left.\begin{array}{l}
\kappa_{1}=2(2 n-3) a_{2} \\
\kappa_{2}=2(8 n-19) a_{2}+12(3 n-8) a_{3}-28(2 n-5) a_{2}{ }^{2}
\end{array}\right\}
$$

For finite sampling κ_{1} and κ_{2} work out to

$$
\begin{align*}
& \kappa_{1}=2(2 n-3) \frac{\sum n_{i} n_{j}}{n(n-1)} \\
& \kappa_{2}=2(8 n-19) \frac{\sum n_{i} n_{j}}{n(n-1)} \\
&+2\left(16 n^{2}-86 n+128\right) \frac{\sum n_{i} n_{j} n_{k}}{n^{[3]}} \\
&+\left(16 n^{2}-104 n+176\right) \frac{\Sigma n_{i}[2] n_{j}[2]}{n^{[4]}} \tag{2.23}\\
&-2\left(16 n^{2}-104 n+176\right) \frac{\sum n_{i} n_{i} n_{i} n_{l}}{n^{[4]}} \\
&-\left\{2(2 n-3) \frac{\sum n_{i} n_{j}}{n(n-1)}\right\}^{2}
\end{align*}
$$

3. Differences between r Successive Observations

In the previous section we considered the distribution of the number of positive or/and negative differences arising from three contiguous observations in a given sequence. We shall, now, investigate the distributions of W, W^{\prime}, T and T^{\prime} for the general case of r consecutive observations. No general expressions, which will hold good for any value of r, exist for the variance and other higher cumulants of these distributions. In fact the results for the variances and higher cumulants for $r \leqslant(n / 2+1)$ and $r>(n / 2+1)$ differ and therefore we give the variances for the different distributions for these two cases separately. The exact probability generating functions and the recurrence relations satisfied by them for any value of r are rather complicated and, therefore, have not been discussed in this paper. We shall, however, discuss these distributions by obtaining their first and second cumulants and examining the nature of their higher order cumulants. It may be noted that for $r=n$, the distributions of the number of positive or negative signs for a continuous distribution is the same as that considered by Kendall (1945) in his discussions on rank, correlation coefficient τ.

A. Positive or negative differences

(a) Statistics W_{r}-Let $x_{1}, x_{2} \ldots x_{n}$ be a given sequence of observations taking any one of the values $\theta_{1}, \theta_{2}, \ldots \theta_{k}$ with probabilities $p_{1}, p_{2}, \cdots p_{k}$ subject to the condition $\sum_{i=1}^{k} p_{i}=1$. Consider the signs of the differences (taken in the same sense or order) between all possible pairs of values arising from moving sets or blocks of r consecutive observations. The number of blocks that can be taken in such a scheme is $(n-r+1)$. We shall now deal for the $(n-r+1)$ blocks the distribution of the total for the number of positive or negative differences obtained by taking all possible differences from each of the $(n-r+1)$ blocks of size r.

The distribution of the number of positive differences is evidently the same as that for negative differences. Taking $r \leqslant(n / 2+1)$, let $X_{1}, X_{2}, \cdots X_{r-1}$ be defined by the relations

$$
\begin{align*}
& X_{1}=(12)+2(23)+3(34)+\cdots \\
& +(r-1)(r-1, r)+(r-1)(r, r+1) \\
& +\cdots+(r-1)(n-r+1, n-r+2) \\
& +(r-2)(n-r+2, n-r+3)+\cdots \\
& +3(n-3, n-2)+2(n-2, n-1) \\
& +(n-1, n) \\
& X_{2}=(13)+2(24)+3(35)+\cdots \\
& +(r-2)(r-2, r)+(r-2)(r-1, r+1) \\
& +\cdots+(r-2)(n-r+1, n-r+3) \\
& +(r-3)(n-r+2, n-r+4)+\cdots \\
& +2(n-3, n-1)+(n-2, n) \\
& X_{3}=(14)+2(25)+3(36)+\cdots \\
& +(r-3)(r-3, r)+(r-3)(r-2, \\
& r+1)+\cdots+(r-3)(n-r+1, n-r+4) \\
& +(r-4)(n-r+2, n-r+5)+\cdots \\
& +2(n-4, n-1)+(n-3, n) \\
& \text {.. } \\
& X_{r-2}=(1, r-1)+2(2, r)+2(3, r+1)+\ldots \\
& +2(n-r+1, n-1)+(n-r+2, n) \\
& X_{r-1}=(1, r)+(2, r+1)+(3, r+2)+\ldots \\
& +(n-r+1, n)
\end{align*}
$$

where ($i j$) denotes the difference between the i-th and j-th observations and assumes the value 1 or 0 according as $\left(x_{i}-x_{j}\right)$ is positive or otherwise, if the distribution considered is thāt for positive signs. If the distribution consiaered is that for negative differences the scores given to $\left(x_{i}-x_{j}\right)$ are -1 and 0 according as $\left(x_{i}-x_{j}\right)$ is negative or otherwise.

The expectation for the total number $\left(W_{r}\right)$ ' of positive signs in ($n-r+1$) moving blocks or sets, each consisting of r consecutive observations, is given by

$$
\begin{equation*}
E\left(W_{r}\right)=E\left(\sum_{h=1}^{r-1} X_{h}\right)=(n-r+1)\binom{r}{2} a_{2} \tag{3.2}
\end{equation*}
$$

where $a_{2}=\Sigma p_{4} p_{j}$.

The variance of ihe distribution for $T=\Sigma X_{h}$ can be cbtained by evaluating

$$
\begin{equation*}
E\left[\sum_{h=1}^{r-1}\left(X_{h}-\bar{X}_{h}\right)\right]^{2} \tag{3.3}
\end{equation*}
$$

Expanding (3.3) in terms of the substitutions given in (3.1) the variance reduces to
$k_{1}\{$ Variance of a positive difference like (12) from two observations $\}+2 k_{2}$ \{covariance of two positive differences like (12) and (23) from three observations $\}+2 k_{3}$ \{covariance of two positive differences like (12) and (13) rom three observations $\}+2 k_{4}$ \{covariance of two positive differences like (13) and (3) from three observations\} or symbolically

$$
\begin{align*}
& +2 k_{4} \operatorname{cov}(\underset{\substack{x \times 2 \\
123}}{(\underset{2 l}{ })} \tag{3.4}
\end{align*}
$$

where $k_{1}, k_{2}, k_{3}, k_{4}$ represent the number of times that the configurations associated with the respective k 's would occur in the distribution. The variance and the covariances for these configurations are given in Table I.

Table I

Variance and	covariances for different		config
Configurations	Variance or Covariance		Remark
A	$a_{2}\left(1-a_{2}\right)$	a_{2}	$2 p_{i} p_{j}$
-	$a_{3}-a_{2}{ }^{2}$		$\Sigma p_{i} p_{j} p_{k}$
\digamma	$\Sigma p_{i} p_{i}^{2}+2 a_{3}-a_{2}{ }^{2}$..
A	$\Sigma \lambda_{i}^{2} \rho_{j}+2 a_{3}-a_{2}{ }^{2}$.

We shall now obtain the values of k_{1}, k_{2}, k_{3} and k_{4}.

$$
\begin{align*}
k_{1} & =\sum_{h=1}^{r-1}\left\{2 \sum_{t=1}^{r-h-1} t^{2}+(r-h)^{2}(n-2 r+h+2)\right\} \\
& =\frac{1}{12} r(r-1)\{2 n(2 r-1)-r(5 r-7)\} \tag{3.5}
\end{align*}
$$

To determine k_{2}, we lave to enumerate the number of ways in which any two observations, one on each side of the $(n-2)$ central values of the sequence, get associated with one another in the distribution under consideration. It can be seen that for the s-th observation, $s \leqslant(r-1)$, this number is equal to

$$
\begin{equation*}
\frac{s(s-1)}{2} \cdot \frac{s(2 r-s-1)}{2} \tag{3.6}
\end{equation*}
$$

The contribution in k_{2} for $s \leqslant(r-1)$ is given by

$$
\begin{align*}
& \sum_{s=1}^{r-1} \frac{s(s-1)}{2} \cdot \frac{s(2 r-s-1)}{2} \\
& \quad=\frac{1}{120} r(r-1)(r-2)\left(9 r^{2}-8 r+3\right) \tag{3.7}
\end{align*}
$$

On account of the symmetry, the contributions in k_{2} for the first and the last $(r-1)$ observations are equal. The $(n-2 r+2)$ observations in the centre will make a furthes contribution of

$$
\begin{equation*}
\frac{(n-2 r+2) r^{2}(r-1)^{2}}{4} \tag{3.8}
\end{equation*}
$$

to k_{2}. Hence

$$
\begin{align*}
& k_{2}=\frac{1}{60} r(r-1)(r-2)\left(9 r^{2}-8 r+3\right) \\
&+\frac{1}{4}(r-2 r+2) r^{2}(r-1)^{2} \tag{3.9}
\end{align*}
$$

The values of k_{3} and k_{4} are equal and k_{3} can be obtained by noting the number of times that one observation gets associated with any two observations to its right in the distribution. The s-th observation ($s \leqslant r-1$) can be associated with the remaining observations to the right of it in

$$
\begin{array}{r}
\left\{\binom{\frac{s}{2}(2 r-s-1)}{2}-(r-s)\binom{s}{2}-\binom{s-1}{2}\right. \\
\left.-\binom{s-2}{2}-\ldots-\binom{2}{2}\right\}
\end{array}
$$

ways. Now (3.10) reduces to

$$
\left\{\left(\begin{array}{c}
s \tag{3.11}\\
\frac{s}{2}(2 r-s-1) \\
2
\end{array}\right)-(r-s)\binom{s}{2}-\binom{s}{3}\right\}
$$

The contribution in k_{3} for $s \leqslant(r-1)$ and $>(n-r+1)$ is

$$
\begin{align*}
& \sum_{s=1}^{r-1}\left[\left\{\binom{\frac{s}{2}(2 r-s-1)}{2}-(r-s)\binom{s}{2}-\binom{s}{3}\right\}\right. \\
& \left.+\left\{\binom{\frac{s}{2}(s-1)}{\cdot 2} \div\binom{ s}{3}\right\}\right] \tag{3.12}\\
& =\frac{1}{120} r(r-1)(r-2)\left(11 r^{2}-17 r+12\right) \tag{3.13}
\end{align*}
$$

For $(r-1)<s \leqslant(n-r+1)$, the contribution in k_{3} is

$$
\begin{equation*}
(n-2 r+2)\left\{\binom{\frac{r}{2}(r-1)}{2}-\binom{r}{3}\right\} \tag{3.14}
\end{equation*}
$$

The sum of the expression (3.13) and (3.14) is k_{3}.
Multiplying the k 's by the respective variance and covariances of the configurations and simplifying, we get the variance or the second cumulant of W_{r} as

$$
\begin{align*}
\kappa_{2}=\frac{1}{60} & r(r-1)\left[5\{2 n(2 r-1)-r(5 r-7)\}\left(a_{2}-a_{2}{ }^{2}\right)\right. \\
& +2\left\{(r-2)\left(9 r^{2}-8 r+3\right)+15(n-2 r+2)\right. \\
& \times r(r-1)\}\left(a_{3}-a_{2}{ }^{2}\right)+(r-2)\left\{\left(11 r^{2}-17 r+12\right)\right. \\
& \left.+5(n-2 r+2)(3 r-1)\}\left(a_{2}+a_{3}-2 a_{2}{ }^{2}\right)\right]
\end{align*}
$$

where the a 's are monomial symmetric function in p 'ss.
The general expressions for the mean and the variance of W_{r} obtained above are valid only so long as $(n-2 r+2) \geqslant 0$ or $r \leqslant(n / 2+1)$ because when r exceeds ($n / 2+1$) the equations given in (3.1) do not hold good. Consequently separate formulæ have to be developed to cover this case.

When $r>(n / 2+1)$, for convenience we shall take the size of the blocks to be $r=(n-R)$. Let $X_{1}, X_{2}, \cdots X_{n-n-1}$; be defined by a set of equations similar to (3.1) the coefficients of which are represented by the following pattern:-

There are ($n-R-1$) rows in all. The first row contains $(n-1)$ values having ($n-2 R-1$) central values equal to $(R+1)$; the second ($n-2$) having ($n-2 R-2$) central values equal to $(R+1$), and so on; the last row having $(R+1)$ values all of them being equal to 1 .

Proceeding on the same lines as in the previous case, we obtain

$$
E\left(W_{n-R}\right)=(R+1)\binom{n-R}{2} a_{2}
$$

and

$$
\begin{align*}
\kappa_{2}\left(W_{n-R}\right)= & \frac{1}{60}(R+1)\left[5 \left\{6 n^{2}(R+1)\right.\right. \\
& -2 n\left(8 R^{2}+13 R+3\right) \\
& \left.+R\left(11 R^{2}+25 R+12\right)\right\}\left(a_{2}-a_{2}^{2}\right) \\
& +2\left\{10 n^{3}(R+1)-30 n^{2}(R+1)^{2}\right. \\
& +5 n\left(6 R^{3}+20 R^{2}+20 R+4\right) \\
& \left.-R\left(11 R^{3}+54 R^{2}+81 R+34\right)\right\} \tag{3.17}\\
& \times\left(a_{3}-a_{2}^{2}\right)+\left\{20 n^{3}(R+1)\right. \\
& -10 n^{2}\left(7 R^{2}+14 R+6\right)+10 n\left(8 R^{3}\right. \\
& \left.+25 R^{2}+22 R+4\right)-R\left(29 R^{3}\right. \\
& \left.+131 R^{2}+184 R+76\right\}\left(a_{2}+a_{3}\right. \\
& \left.\left.-2 a_{2}^{2}\right)\right]
\end{align*}
$$

(b) Statistics T_{r}.-Let T_{r} stand for the total number of positive or negative differences between the pairs of observations i and j such that $j-i \leqslant(r-1)$ and each difference occurs once only. Then taking the case of $r \leqslant(n / 2+1)$ and as in (a) above let $X_{1}, X_{2} \cdots X_{r-1}$ be defined as follows:-
where, as before, ($i j$) takes values 1 or 0 according as $\left(x_{i}-x_{j}\right.$) is positive or otherwise.

Proceeding on the same lines as in the case of W_{r} we get

$$
\left.\begin{array}{rl}
E\left(T_{r}\right)=\frac{1}{2}(r-1)(2 n-r) a_{2} . \\
\kappa_{2}\left(T_{r}\right)=\frac{1}{6}(r-1) \cdot\left[3(2 n-r)\left(a_{2}-a_{2}{ }^{2}\right)\right. \\
& +12(r-1)(n-r)\left(a_{3}-a_{2}{ }^{2}\right) \tag{3.19}\\
& \left.+2(r-2)(3 n-2 r)\left(a_{2}+a_{3}-2 a_{2}{ }^{2}\right)\right]
\end{array}\right\}
$$

When $r>(n / 2+1)$, say equal to $(n-R)$, we have the following results for the mean and the variance of $T_{n-\mathrm{R}}$:

$$
\begin{align*}
E\left(T_{n-R}\right)=\frac{1}{2} & (n-R-1)(n+R) a_{2} \\
\kappa_{2}\left(T_{n-R}\right)=\frac{1}{6} & {\left[3(n-R-1)(n+R)\left(a_{2}-a_{2}{ }^{2}\right)\right.} \\
& +2\{n(n-1)(n-2)-2 R(R-1) \\
& \times(R+1)\}\left(a_{3}-a_{2}{ }^{2}\right)+2(n-R \tag{3.20}\\
& -1)(n-R-2)(n+2 R) \\
& \left.\times\left(a_{2}+a_{3}-2 a_{2}^{2}\right)\right]
\end{align*}
$$

B. Positive and negative differences

(a) Statistics W_{r}^{\prime}.-It may be noted that the total number of positive and negative differences between pairs of observations in blocks of length r is also equal to the number of times that pairs of observations of different kinds, like i and j, occur in the distribution. In this case (ij) defined earlier will assume the value 1 if $\left|x_{i}-x_{j}\right|$ is not equal to zero and 0 otherwise. Let W_{r}^{\prime} represent the total number of positive and negative differences obtained from the $(n-r+1)$ blocks
in the given sequence. When $r \leqslant(n / 2+1)$, the first two cumulants of this distribution can be evaluated by using the results obtained in sub-section' (a) of (A) above as follows:-

Replace a_{2} by $2 a_{2} ;\left(a_{2}-a_{2}{ }^{2}\right)$ by $\left(2 a_{2}-4 a_{2}{ }^{2}\right)$ and each of $\left(a_{3}-a_{2}{ }^{2}\right)$ and $\left(a_{2}+a_{3}-2 a_{2}{ }^{2}\right)$ by $\left(a_{2}+3 a_{3}-4 a_{2}{ }^{2}\right)$ respectively in the expressions for $E\left(\mathrm{~W}_{r}\right)$ and $\kappa_{2}\left(\mathrm{~W}_{r}\right)$ because in this case also the same types of configurations $\frown ; \curvearrowright, \frown \frown, \curvearrowleft$ and \curvearrowright would be involved with the above expectations. On making these substitutions

$$
\left.\begin{array}{rl}
E\left(W_{r}^{\prime}\right)= & (n-r+1) r(r-1) a_{2} \\
\kappa_{2}\left(W_{r}{ }^{\prime}\right)=\frac{1}{6} r & r(r-1)[\{2 n(2 r-1)-r(5 r \\
& \quad-7)\}\left(a_{2}-2 a_{2}{ }^{2}\right)+\left\{(r - 2) \left(4 r^{2}\right.\right. \tag{3.21}\\
& -5 r+3)+2(n-2 r+2)\left(3 r^{2}\right. \\
& \left.-5 r+1)\}\left(a_{2}+3 a_{3}-4 a_{2}{ }^{2}\right)\right]
\end{array}\right\}
$$

When $r>(n / 2+1)$ and equal to $(n-R)$ say, we get the following values for the mean and the variance:-

$$
\begin{align*}
E\left(W_{n-R}^{\prime}\right)= & (R+1)(n-R)(n-R-1) a_{2} \\
\kappa_{2}\left(W_{n-R}^{\prime}\right)= & \frac{1}{6}(R+1)\left[\left\{6 n^{2}(R+1)-2 n\left(8 R^{2}\right.\right.\right. \\
& +13 R+3)+R\left(11 R^{2}+25 R\right. \\
& +12)\}\left(a_{2}-2 a_{2}^{2}\right)+\left\{6 n^{3}(R+1)\right. \tag{3.22}\\
& -2 n^{2}\left(10 R^{2}+20 R+9\right)+2 n\left(11 R^{3}\right. \\
& \left.+35 R^{2}+32 R+6\right)-R\left(8 R^{3}\right. \\
& \left.\left.+37 R^{2}+53 R+22\right)\right\}\left(a_{2}+3 a_{3}\right. \\
& \left.\left.-4 a_{2}^{2}\right)\right]
\end{align*}
$$

(b) Statistics $\mathrm{T}_{r}{ }^{\prime}$.-In this case the formulæ reduce to the following when $r \leqslant(n / 2+1):-$

$$
\left.\begin{array}{rl}
E\left(T_{r}^{\prime}\right)= & (r-1)(2 n-r) a_{2} \\
\kappa_{2}\left(T_{r}^{\prime}\right)= & \frac{1}{3}(r-1)\left[\left\{3(2 n-r)\left(a_{2}-2 a_{2}^{2}\right)\right\}\right. \\
& +2\{3 n(2 r-3)-r(5 r-7)\}\left(a_{2}\right. \tag{3.23}\\
& \left.\left.+3 a_{3}-4 a_{2}^{2}\right)\right]
\end{array}\right)
$$

When $r>(n / 2+1)$ equal to $(n-R)$ say, we have

$$
\left.\begin{array}{rl}
E\left(T_{n}{ }^{\prime}-R\right)= & (n-R-1)(n+R) a_{2} \tag{3.24}\\
\kappa_{2}\left(T_{n-R}^{\prime}\right)= & \frac{1}{3}\left[3(n-R-1)(n+R)\left(a_{2}-2 a_{2}{ }^{2}\right)\right. \\
& +\left\{3 n^{3}-9 n^{2}-6 n\left(R^{2}+R-1\right)+-2 R\right. \\
& \left.\times(R+1)(R+5)\}\left(a_{2}+3 a_{3}-4 a_{2}{ }^{2}\right)\right]
\end{array}\right\}
$$

The corresponding values for non-free sampling can be evaluated by making the substitutions mentioned in (2.10).

In the above discussion we have not obtained the higher cumulants which will give an idea of the nature of distributions. It can be shown fiom considerations discussed in a previous paper (1952) that for all the statistics dealt in this paper the cumulants are linear functions in n when $r<n / 2+1$ and the highest degree of r in the t-th cumulant associated with n will be $(2 t+1)$ for W and W^{\prime} and $(t+1)$ for T and T^{\prime}. It follows from this that

$$
\left.\begin{array}{l}
\gamma_{t-2}\left(W \text { or } W^{\prime}\right)=\frac{\kappa_{t}}{\kappa_{2}^{t / 2}} \sim 0\left(\frac{1}{n}, \frac{1}{r}\right)^{t / 2-1} \\
\gamma_{t-2}\left(T \text { or } T^{\prime}\right)=\frac{\kappa_{t}}{\kappa_{2}^{t / 2}} \sim 0\left(\frac{1}{n}, \frac{1}{r}\right)^{t / 2-1}
\end{array}\right\}
$$

and they tend to zero as n tends to infinity for any value of $r<n / 2+1$. A similar argument holds good for $r>n / 2+1$. Hence the distributions of all the statistics considered in this paper tend to the normal form.

It may further be observed that these statistics are consistent both in the usual sense and also in the sense defined by Wald and Wolfowitz namely that the probability of rejecting the null hypothesis when it is false should approach unity as the sample size tends to infinity. As regards the former, it can be established with the help of the Techebycheff's Inequality and the latter by using the technique of Mann and Whitney in a similar manner as has been done in an earlier paper (1954).
(c) Number of zero differences and covariances between the number of positive and negative differences.-It may be noted that the total number of positive and negative differences together with the number: of zero differences is constant for a given sequence of obselvations and therefore we do not gain anything by discussing the distribution of zeroes.
lt may, however, be added that the covariance for positive and negative differences would be helpful in devising a comprehensive method
of testing the randomness of a sequence of observations. Therefore, the covariances for positive and negative differencées are given below:When $r \leqslant(n / 2+1)$, we have

$$
\left.\begin{array}{rl}
\operatorname{cov}\left\{W_{r}(+),\right. & \left.W_{r}(-)\right\} \\
= & \frac{r(r-1)}{60}\left[\left\{15 n r(r-1)-\left(21 r^{3}-34 r^{2}\right.\right.\right. \\
& +11 r+6)\} a_{2}+\left\{5 n\left(9 r^{2}-17 r+4\right)\right. \\
& \left.-\left(59 r^{3}-156 r^{2}+99 r+14\right)\right\} a_{3} \\
& -5\left\{2 n\left(6 r^{2}-8 r+1\right)-\left(16 r^{3}-33 r^{2}\right.\right. \tag{3.26}\\
& \left.+15 r+4)\} a_{2}{ }^{2}\right] \\
\operatorname{cov}\left\{T_{r}(+),\right. & \left.T_{r}(-)\right\} \\
= & \frac{(r-1)}{6}\left[\{6 n(r-1)-6 r(r-1)\} a_{2}\right. \\
& +\{6 n(3 r-5)-2 r(7 r-11)\} a_{3}
\end{array}\right)
$$

When $r>(n / 2+1)$ and equal to $(n-R)$, we get

$$
\begin{aligned}
& \operatorname{cov}\left\{W_{n-R}(+), W_{n-R}(-)\right\} \\
&= \frac{(R+1)}{60}\left[\left\{10 n^{3}(R+1)-30 n^{2}(R+1)^{2}\right.\right. \\
&+10 n\left(3 R^{3}+10 R^{2}+10 R+2\right) \\
&\left.-R\left(11 R^{3}+54 R^{2}+81 R+34\right)\right\} a_{2} \\
&+\left\{50 n^{3}(R+1)-10 n^{2}\left(17 R^{2}+34 R\right.\right. \\
&+15)+10 n\left(19 R^{3}+60 R^{2}+54 R+10\right) \\
&\left.\quad-R\left(69 R^{3}+316 R^{2}+449 R+186\right)\right\} a_{3} \\
& \quad-\left\{60 n^{3}(R+1)-10 n^{2}\left(20 R^{2}+37 R\right.\right. \\
&+15)+10 n\left(22 R^{3}+62 R^{2}+51 R+9\right) \\
&\left.\left.\quad-R\left(80 R^{3}+315 R^{2}+405 R+160\right)\right\} a_{2}{ }^{2}\right] \\
& \operatorname{cov}\left\{T_{n-R}(+), T_{n-R}(-)\right\} \\
&= \frac{1}{6}\left[\{n(n-1)(n-2)-2 R(R-1)(R+1)\} \dot{a}_{2}\right. \\
&+\left\{5 n^{3}-15 n^{2}-2 n\left(6 R^{2}+6 R-5\right)\right. \\
&\left.+6 R\left(R^{2}+4 R+3\right)\right\} a_{3}-\left\{6 n^{3}-15 n^{2}\right. \\
& \quad-3 n\left(4 R^{2}+4 R-3\right)+R\left(4 R^{2}+21 R\right. \\
&\left.\quad+17)\} a_{2}^{2}\right]
\end{aligned}
$$

4. Applications

The statistics $W_{r}, W_{r}^{\prime}, T_{r}, T_{r}^{\prime}$ considered in the previous sections can be used for testing (1) whether a given sequence of observations is random or not and (2) whether two or more samples can be treated as samples from the same population. The test for randomness of a given sequence consisis in noting the observed values of W 's or T 's and comparing them with their expected values on the basis of their variances on the assumption that the standardised deviates of the statistics are distributed normally. As regards (2) the procedure is to pool together the various samples and arrange them in ascending or descending order indicating the samples to which these observations belong by designating the samples by 1,2 , e:c...... . In this set-up we obtain a sequence of observations for the characters 1,2 , etc. We then examine whether this sequence is random or not, by the statistic W, W^{\prime}, T or T^{\prime} for the characters 1,2 , etc. 'It may be noted that in arranging the samples in this manner it will not be possible to have a unique arrangement when the samples belong to discontinuous populations. In this case we shall take the average of the observed W, W^{\prime}, T or T^{\prime}, as the case may be, for the different possible arrangements. Alternatively, the test may be applied by considering the first part of the sequense as Sample I and the second part as Sample II, and r being equal: to $n_{1}+h$, where n_{1} is the size of the first sample and $h \leqslant n_{\mathbf{2}}$, the size of the second sample.

A more comprehensive test than the one given above can be had by examining the significance of the difference between the observed number x of positive and y of negative differences obtained for the statistic W_{r} (or T_{r}) on the basis of the following bivariate statistic

$$
\begin{equation*}
\frac{1}{1-\rho^{2}}\left\{\frac{(x-m)^{2}}{\sigma_{x}{ }^{2}}+\frac{(y-m)^{2}}{\sigma_{y}{ }^{2}}-2 \rho \frac{(x-m)(y-m)}{\sigma_{x} \sigma_{y}}\right\} \tag{4.1}
\end{equation*}
$$

where x and y, as already explained, stand for the observed number of positive and negative differences in W_{r} (or T_{r}) in the given sequence; m and σ^{2} for the mean and the variance for W_{r} (or T_{r}) and ρ is the coirelation coefficient between $W_{r}(+)$ and $W_{r}(-)$ [or $T_{r}(+-)$ and $\left.T_{r}(-)\right]$.

Now the question as to which statistics should be used in actual practice can be decided only after examining their powers for different alternatives and their asymptotic relative efficiencies. These aspects are considered in the next section-

5. - Power and Efficiency of the Statistics

A number of non-parametric tests has been developed during the past two decades for testing the randomness of a given sequence of
observations and the hemogeneity of two or more samples. The efficiency of these tests can be studied in general by examining the power curves for different types of alternatives. The possible alternatives here, unlike the parametric tests, are many and it is possible that a test which is efficient for one type of alternative may not be so forather type. The alternatives mostly considered are either normal or normal regression. In normal alternatives the distribution of the parent population is assumed to be normal while in the other the assumption is that

$$
\begin{equation*}
y_{i}=a+\beta X_{i}+\epsilon_{i} \quad(i=1,2, \cdots n) \tag{5:1}
\end{equation*}
$$

where ϵ_{i} is distributed normally with zero mean and unit variance.
As the calculation of the actual powers is very cumbersome, Walsh (1946) suggested that the relative efficiency of the tests can be obtained by comparing the sizes of the samples required for a given power against a given type of alternative. Two power curves are considered to be equivalent if their average height is "the same. Dixon (1953) has pointed out that the equivalence by averaging process disguises the differences in the shape of the cuives. He has, therefore, suggested that it would be more realistic to define a power efficiency function which would give the power efficiency for each alternative of a given type. Following Walsh, Pitman (1948) has defined the asymptotic relative efficiency of two tests by taking in the limit, under certain conditions, the reciprocal of the ratio of sample sizes required to attain the same power against the same alternative at $\theta=\theta_{0}+\epsilon$ as ϵ tends to zero and n to infinity. Mood (1954) shows that the asymptotic relative efficiency as defined by Pitman is the same as the ratio of the changes in power as θ changes from θ_{0} to $\theta_{0}+\epsilon$ when $\left|\theta-\theta_{0}\right|$ $\ll 1 / \sqrt{ } n$.

It may be noted that Pitman's result follows directly from that of Wald (1945) given in connection with his investigations on sequential analysis. The size of the sample required for a no mal distribution for specified ($\alpha, \beta, \theta_{1}, \theta_{1}$) is given by

$$
\begin{equation*}
n=\frac{\left(\lambda_{1}-\lambda_{0}\right)^{2}}{\left(\theta_{1}-\theta_{0}\right)^{2}} \tag{5.2}
\end{equation*}
$$

where λ_{0} and λ_{1} are the standardized deviates for the hypothesis $\theta=\theta_{0}$ and θ_{1} respectively for the probabilities $(1-a)$ and β. When θ_{1} tends to θ_{0} the above reduces to

$$
\begin{equation*}
n=\frac{1}{\sigma^{2}}\left(\frac{d \mu}{d \theta}\right)^{2} \tag{5.3}
\end{equation*}
$$

We shall now examine the power and the relative efficiency of the tests developed in this paper for different values of r and compare them
with the Wilcoxon's or Mann and Whitney's test which corresponds to W_{n} or T_{n} of the binomial case for $r=n$. We shall also investigate the relative efficiency of the various statistics for testing the randoniness of sequences belonging to continuous populations. It may be observed that, in general, the relative efficiency, as defined by Pitman, of the statistics considered in this paper for different values of r and of others of allied forms can equally be ascertained by taking the reciprocal of the squares of the coefficients of variation of the statistics. This can be seen from the fact that the expected values of the statistics are of the form

$$
E\left(W_{r} \text { say }\right)=k(r) a_{2}
$$

where $k(r)$ is a function of r and $a_{2}=\Sigma p_{i} p_{j}$. Then

$$
\begin{equation*}
\frac{d E}{d \theta}=k(r) \frac{d a_{2}}{d \theta} \tag{5.4}
\end{equation*}
$$

on the assumption that $d a_{2} / d \theta$ is the same for all values of r, it can be easily seen that the relative efficiency, which depends on

$$
\begin{equation*}
\frac{1}{\sigma^{2}}\left(\frac{d E}{d \theta}\right)^{2}=\frac{k^{2}(r)}{\sigma^{2}}\left(\frac{d a_{2}}{d \theta}\right)^{2}, \tag{5.5}
\end{equation*}
$$

is directly proportional to the square of the reciprocal of the coefficient of tariation. In view of this fact, we shall be content by examining the relative efficiency of the statistics on the basis of the squares of their coefficients of variation.

The efficiency of the different statistics developed in this paper has been examined firstly by calculating their powers for different hypotheses and alternatives and secondly by finding the squares of their coefficients of variation. The powers calculated for $n=100$ and 200 and for different values of p 's are tabulated in Tables II to IV. The powers for different values of r for $H_{0}:(p=.5$ and $q=.5)$ and ($p=\cdot 2$ and $q=\cdot 8$) are shown in Figs. 1 to 6 for some alternatives. In these graphs the curves I, II, III and IV refer to the statistics T_{r}, W_{r}, W_{r}^{\prime} and T_{r}^{\prime} respectively. A study of the graphs and tables giving the powers of the various statistics for $n=100$ leads to the following conclusions:-
(i) When the null hypothesis is $p=\cdot 5, q=\cdot 5$, we find that the statistics W_{r}, which are based on all the possible positive (or negative) differences taken from ($n-r+1$) blocks each consisting of r contiguous observations, are in general more powerful than T_{r} in which the differences between any two observations occur once only. The

Table II
Powers of different tests for-various alternatives in comparing two samples

Hypothesis	$r=2$	$r=5$	$r=10$				$r=15$			$r=18$		$r=20$			$\frac{\mid r=25}{W_{r}^{\prime}}$
	$W_{r_{r}}$ or T_{r}	Tr	W_{r}	W_{r}^{\prime}	T_{r}	T_{r}^{\prime}	W_{r}	W_{r}^{\prime}	T_{r}	W_{r}	W_{r}^{\prime}	W_{r}	T_{r}	T.r ${ }^{\prime}$	
$H_{0}-\frac{p=.50}{q}=.50$	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500	0.0500
$: H_{1}-\frac{p=.45}{q=.55}$	0.0533	0.0676	0.0802	0.0886	0.0786	0.0988	0.0866	$0 \cdot 1096$	0.0785	0.0872	0.1217	0.0867	0.0749	0.1497	0.1483
$H_{2}-\begin{aligned} & p=.40 \\ & q=.60 \end{aligned}$	0.0767	0.1673	0.2329	0.2728	0.2269	0.3180	0.2608	$0 \cdot 3509$	0.2254	0.2626	0.3868	0.2589	0.2056	$0 \cdot 4651$	0.4496
$. H_{3}-\frac{p=-35}{q=-65}$	$0 \cdot 1623$	0.4185	0.5318	0.5880	0.5258	0.6453	0.5671	$0 \cdot 6695$	0.5217	0.5663	0.6992	0.5603	$0 \cdot 4874$	0.7671	0.7426
$H_{4}{ }^{p} \begin{aligned} & p=-30 \\ & y=.70\end{aligned}$	0.3655	0.7314	0.8135	0.8484	0.8125	0.8815	0.8319	0.8871	0.8082	0.8293	$0 \cdot 8990$	0.8242	0.7824	$0 \cdot 9314$	0.9141
$H_{5}-\frac{p=\cdot 25}{g=.75}$	0.6706	0.9315	0.9580	0.9684	0.9589	0.9781	0.9621	0.9775	0.9569	0.9604	0.9799	0.9571	0.9477	0.9885	0.9824
$. H_{\mathrm{G}}-\begin{gathered} p=\cdot 20 \\ g=.80 \end{gathered}$	$0 \cdot 9169$	0.9931	0.9961	0.9973	0.9964	0.9984	0.9964	0.9981	0.9961	0.9960	0.9983	0.9956	0.9948	0.9993	0.9984
$\quad H_{7}-\begin{aligned} & p=.15, \\ & q=.85 . \end{aligned}$	49925*	98752*	99347*	99610*	99458*	99822*	99338*	99726**	99362\%	99208**	99741*	99071*	990:2*	9925*	99725^{*}
$\therefore H_{\mathrm{s}}-\begin{gathered} p=\cdot 10 \\ q=.90 \end{gathered}$	$1 \cdot 0000$	1.0000	1\%0000	$1: 0000$	1:0000	1:0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table II-Contd.

Hypothesis	$r=30$		$r=35$	$r=40$		$r=45$	$r=50$	$\dot{r}=80$		$r=90$	$y=100$	
	W_{r}^{\prime}	$T_{r}{ }^{\prime}$	W_{r}^{\prime}	W_{r}^{\prime}	T_{r}^{\prime}	$W_{\cdot}{ }^{\prime}$	- $T_{\tau}{ }^{\prime}$	W_{r}^{\prime}	. T_{r}^{\prime}	W_{r}^{\prime}	W, or T_{r}	$W_{r}^{\prime}{ }^{\prime}$ or T_{r}^{\prime}
$. H_{0}-\begin{aligned} & p=.50 \\ & q=.50\end{aligned}$	$0 \cdot 0500$	0.0500	$0 \cdot 0500$									
$H_{1}-\begin{aligned} & p=.45 \\ & q=.55 \end{aligned}$	$0 \cdot 1655$	0-1910	0:1813	0-1993	$0 \cdot 2233$	$0 \cdot 2083$	$0 \cdot 2475$	$0 \cdot 2641$	0.2851	0-2784.	0.0530	0.2920
$\mathrm{H}_{2}-\begin{aligned} & p=.40 \\ & q=\cdot 60\end{aligned}$	$0 \cdot 4821$	0.5414	$0 \cdot 5078$	$0 \cdot 5284$	$0 \cdot 5872$	$0 \cdot 5453$	$0 \cdot 6170$	0.6260	-0.6591	$0 \cdot 6469$	$0 \cdot 0719$	0.6661
$H_{3}-\begin{aligned} & p=\cdot 35 \\ & q=.65\end{aligned}$	0.7615	$0 \cdot 8127$	$0 \cdot 7751$	0-7853	$0 \cdot 8369$	0.7935	$0 \cdot 8520$	$0 \cdot 8486$	0.8741	$0 \cdot 8639$	$0 \cdot 1378$	$0 \cdot 8775$
$H_{4}-\begin{aligned} & p=-30 \\ & q\end{aligned}$	$0 \cdot 9197$	$0 \cdot 9467$	0.9233	0.9259	0.9543	0.9280	0.9592	0.9544	0.9670	0.9619	0.2960	0.9681
$H_{5}^{-} \quad q=.75$	0.9849	0.9912	0.9833	-	$0 \cdot 9926$	$0 \cdot 9835$	0.9935	0.9916	$0 \cdot 9951$	-	0.5589	$0 \cdot 9953$
. $H_{6}-\begin{aligned} & p=.20 \\ & q=.80\end{aligned}$	$0 \cdot 9984$	0.9994	0.9983	-	0.9995	$0 \cdot 9982$	0.9996	0.9993	$0 \cdot 9997$.	$0 \cdot 8332$	0.9997
$H_{7} \sim^{p=\cdot 15}$	99689*	99945*	99642*	-	99955*	99566*	99962*	99911*	99978*	\cdots	0.9769	99980*
. $\mathrm{H}_{8}-$	1.0000	$1 \cdot 0000$	1.0000	..	1-0000	$1 \cdot 0000$	$1 \cdot 0000$	$1 \cdot 0000$	1.0000	-•	0.9997	1.0000

Table III
Powers of different tests for various alternatives in comparing two samples

Hypothésis	$r=2$	$x=5$		$r=6$	$r=10$			$r=15$			$r=20$		
	W_{r} or T_{r}	W_{r}^{\prime}	T_{r}	W_{r}	W_{r}	w_{r}^{\prime}	T	${ }^{\prime}$ r	W_{r}^{\prime}	r_{r}	W_{r}	${ }^{2}$	$T_{r}{ }^{\prime}$
$H_{1}-\begin{aligned} & p=.50 \\ & q=.50\end{aligned}$	0.9046	76483*	81809*	85311*	98515*	99819*	98626*	99348*	1.0000	98208*	98803*	94723*	1-0000
$H_{2}-\begin{aligned} & p=-45 \\ & q=.55\end{aligned}$	0.8847	0.9940	0.9950	0.9957	0.9990	0.9997	0.9991	0.9993	99571*	89117*	89231*	0.9977	99997*
$\mathrm{H}_{3}-\begin{aligned} & p=40 \\ & q=.60\end{aligned}$	0.8114	0.9610	0.9644	0.9653	0.9784	0.9858	0.9809	0.9788	0.9899	0.9785	0.9729	0.9712	0.9970
$H_{4}-\begin{aligned} & p=35 \\ & q=.65\end{aligned}$	0.6530	0.8088	0.8149	0.8131	0.8296	$0 \cdot 8471$	0.8408	0.8218	0.8491	0.8329	0.8023	0.8163	$0 \cdot 8914$
$H_{5}-\begin{aligned} & p=.30 \\ & q=.70\end{aligned}$	0.4048	0.4872	0.4916	0.4872	$0 \cdot 4901$	0.5016	0.5030	0.4775	0.4951	0-4949	$0 \cdot 4594$	0.4823	0.5344
$H_{6}-\begin{gathered}p=.25 \\ q=.75\end{gathered}$	0.1572	$0 \cdot 1701$	$0 \cdot 1712$	$0 \cdot 1692$	0.1675	$0 \cdot 1699$	$0 \cdot 1718$	0.1629	0.1664	$0 \cdot 1693$	0.1605	$0 \cdot 1662$	$0 \cdot 1769$
$\begin{array}{r} H_{0}-\quad p=20 \\ g=.80 \end{array}$	0.0590	0.0500	0.0500	$0 \cdot 0500$	0.0500	0.0500	0.0500	0.0500	0.0500	$0 \cdot 0500$	0.0500	0.0500	0.0500
$H_{7}-\begin{aligned} & y=-15 \\ & q=.85\end{aligned}$	$0 \cdot 1957$	0.2450	0.2471	0.2455		0.2539	0.2536	0.2441	$0 \cdot 2523$	0.2503	0.2370	0.2447	0.2685
$H_{8}-\begin{aligned} & p=-10 \\ & q=-90\end{aligned}$	0.6957	$0 \cdot 7818$	0.7854	0.7808	$0 \cdot 7809$	0.7896	0.7922	0.7691	0.7826	0.7853	0.7528	0.7750	0.8122

Table III-Contd.

Hypothesis	$r=25$	$r=30$		$r=45$			$y=50$	$r=80$		$r=100$	
	W_{r}^{\prime}	W_{r}^{\prime}	T_{r}	W_{T}	W_{r}^{\prime}	T_{r}	T_{r}^{\prime}	W_{r}^{\prime}	$T_{r}{ }^{\prime}$	W_{r} or T_{r}	$W_{r}^{\prime}{ }^{\prime}$ or T_{r}^{\prime}
$H_{1} \frac{p=.50}{q}=.50$	1-0000	$1 \cdot 0000$	57916*	0.9662	1.0000	0.9694	$1 \cdot 0000$	$1 \cdot 0000$	$1 \cdot 0000$	$0 \cdot 7955$	1.0000
$\begin{aligned} & H_{2} \frac{p}{}=.45 \\ & q=.55 \end{aligned}$	99921*	99938*	0.9901	0.9446	99932*	$0 \cdot 9536$	1.0000	I•0000	$1 \cdot 0000$	$0 \cdot 7684$	$1 \cdot 0000$
$H_{3}-\frac{p}{}=.40$	0.9898	0.9884	$0 \cdot 9455$	$0 \cdot 8492$	0.9824	$0 \cdot 8813$	$0 \cdot 9985$	0.9959	0.9991	0-6804	0.9992
$H_{4}-\frac{p=.35}{q}=.65$	$0 \cdot 8323$	$0 \cdot 8195$	$0 \cdot 7734$	$0 \cdot 6360$	$0 \cdot 7829$	0-6972	$0 \cdot 8998$	0-8601	0.9144	$0 \cdot 5222$	0.9163
$\begin{array}{r} H_{5}-p=.30 \\ q=.70 \end{array}$	$0 \cdot 4699$	$0 \cdot 4561$	$0 \cdot 4587$	0.3554	$0 \cdot 4226$	0-4089	0.5374	$0 \cdot 4899$	0.5563	$0 \cdot 3144$	0.5588
$H_{6} \frac{p=.25}{q}=.75$	$0 \cdot 1579$	0.1481	$0 \cdot 1599$	0-1318	$0 \cdot 1441$	$0 \cdot 1497$	$0 \cdot 1766$	0-1624	$0 \cdot 1822$	0.1284	0-1829
$H_{0} \frac{p}{q}=-20$	$0 \cdot 0500$	0.0500									
$H_{7} \frac{p=\cdot 15}{q=.85}$	$0 \cdot 2433$	$0 \cdot 2383$	$0 \cdot 2316$	$0 \cdot 1913$	$0 \cdot 2263$	0.2087	$0 \cdot 2701$	0.2517	$0 \cdot 2778$	$0 \cdot 1550$	0.2788
$H_{\mathrm{s}}=\begin{gathered} p=\cdot 10 \\ g=.90 \end{gathered}$	0.7603	0.7481	0.7499	$0 \cdot 6398$	$0 \cdot 7174$	$0 \cdot 7025$	$0 \cdot 8130$	0.7762	0.8263	0.5569	0.8281

* Prefix 0.99.

Table IV
Powers of different tests for various alternatives in comparing two samples

Hypothesis	$r=2$	$r=10$	$r=20$	$r=30$	$r=40$		$r=60$	$r=80$	$r=200$	
	W_{r} or T_{r}	W_{r}	W_{r}	W_{r}	W_{r}	$W_{r}{ }^{\prime}$	$W_{r}^{\prime}{ }^{\prime}$	$W_{r}{ }^{\prime}$	W_{r}	$W_{r}{ }^{\prime}$
$H_{0}-\begin{aligned} & p=.50 \\ & q=.50 \end{aligned}$	$0 \cdot 0500$	$0 \cdot 0500$	0.0500	$0 \cdot 0500$	$0 \cdot 0500$	$0 \cdot 0500$	$0 \cdot 0500$	0.0500	0.0500 -	$0 \cdot 0500$
$H_{1}-\begin{aligned} & p=.45 \\ & q=.55 \end{aligned}$	0.0545	$0 \cdot 0918$	$0 \cdot 1156$	$0 \cdot 1177$	$0 \cdot 1101$	$0 \cdot 2294$	$0 \cdot 2877$	$0 \cdot 3343$	$0 \cdot 0539$	0.4665
$H_{2}-\begin{aligned} & p=.40 \\ & q=.60 \end{aligned}$	$0 \cdot 0960$	$0 \cdot 3488$	$0 \cdot 4450$	$0 \cdot 4476$	$0 \cdot 4154$	$0 \cdot 6686$	$0 \cdot 7189$	$0 \cdot 7485$	0.0864	0.8493
$H_{3}-\begin{aligned} & p=.35 \\ & q=.65 \end{aligned}$	$0 \cdot 2595$	-0.7585	$0 \cdot 8277$	$0 \cdot 8250$	0.7988	$0 \cdot 9219$	0.9327	$0 \cdot 9369$	$0 \cdot 2116$	$0 \cdot 9740$
$H_{4}-\begin{aligned} & p=\cdot 30 \\ & q=.70 \end{aligned}$	$0 \cdot 6014$	0.9638	0.9771	$0 \cdot 9754$	$0 \cdot 9685$	$0 \cdot 9909$	$0 \cdot 9914$	$0 \cdot 9913$	$0 \cdot 4940$	$0 \cdot 9982$
$H_{5}-\begin{aligned} & p=.25 \\ & q=.75 \end{aligned}$	$0 \cdot 9124$	83861*	90374*	88499*	82930*	96249*	95841*	95174*	$0 \cdot 8271$	99476*
$H_{6}-\begin{aligned} & p=.20 \\ & q=.80 \end{aligned}$	64288*	99896 ${ }^{*}$	99937*	99911**	99834*	99973*	99961**	99941*	0.9821	1:0000
$H_{7}-\begin{aligned} & p=.15 \\ & q=.85 \end{aligned}$	99946*	$1 \cdot 0000$	$1 \cdot 0000$	1-0000.	1.0000	1-0000	$1 \cdot 0000$	1-0000	98251*	$1 \cdot 0000$
$H_{8}-p=\cdot 10$	$1 \cdot 0000$	1.0000	1-0000	$1 \cdot 0000$	$1 \cdot 0000$	1-0000	$1 \cdot 0000$	1-0000	1-0000	1-0000

Graph 1. Power of the tests for different values of $r, n=100 ; H_{0}: p_{6}=\cdot 5$; $H_{1}: p_{1}=-45$.
powers of both W_{r} and T_{r} increase with r, attain their maximum values and then gradually decrease. In fact, the power for even $\dot{r}=2$ is slightly more than that for $r=n$ ard the two statistics W_{r}^{\prime} and T_{r} are identical in these two cases. Also, the value of the maximum power for W_{r} is more than that for $T_{r:}$ The table below explains the posit. fion more clearly in regard to the maximum power,

Graph 2. Power of the tests for different values of $r, n=100 ; H_{0}: p_{0}=\cdot 5$; $H_{1}: p_{1}=-40$.

3
Graph 3. Power of the tests for different values of $r, n=100 ; H_{0}: p_{0}=\cdot 5$; $H_{1}: p_{1}=-30$.

Alternative bypothesis H_{1}		Maximum power with the corresponding r			
p	q		\because		
		Power	r	Power	r
. 45	- 55	. 0872	18	-0786	10
. 40	. 60	. 2626	18	- 2269	10
. 35	. 65	.5671	-15	- 5258	10
- 30	. 70	- 8319	15	. 8125	10
. 25	. 75	. 9621	15	-9589	10
-20	- 80	-9964	15	. 9964	10
$\cdot 15$. 85	-999935	10	.999946	10

Grári 4. Power of the tests for different va lues of $r, n=100 ; H_{0}: p_{0}=.2$; $H_{1}: p_{\downarrow}=\cdot 15$.

Graph 5. Power of the tests for different values of $r, n=100 ; H_{0}: p_{0}=-2$; $H_{1}: p_{1}=-25$.
(ii) When the null hypothesis is $p=\cdot 2, q=\cdot 8$, we find that the statistics W_{r} are generally more powerful than T_{r} only when the alternative hypotheses ($p=.5, .45$ and 40) are far removed from H_{0}, r taking values 15 to 20 , otherwise T_{r} exhibit greater power than W_{r}. The following table summarises the information given in Table III as regards maximum power.

Graph 6. Power of the tests for different values of $r, n=100 ; H_{0}: p_{0}=\cdot 2$; $H_{1}: p_{1}=\cdot 35$.

160 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

Alternate hypothesisH_{1}		Maximum power with the coresponding r :			
	q	W_{r}		${ }^{2} \quad T_{r}$	
		Power	r	Power	r
. 50	. 50	. 999935	15	-99986	10
. 45	. 55	. 9993	15	.9991	10
- 40	. 60	. 9788	15	. 9809	10.
-35	. 65	. 8296	10	-8408	10
-30	. 70	. 4901	10	-5030	10
. 25	. 75	$\cdot 1692$	6	- 1718	10
. 15	. 85	. 2485	10	. 2536	10
$\cdot 10$. 90	. 7809	10	. 7922	10

(iii) As regards $T_{r}{ }^{\prime}$ its power uniformly increases as r increases in all the cases and reaches a maximum only at $r=n$. Regarding W_{r}^{\prime} it would be noticed that its power, even though it increases with increasing r exicepting for a few cases, is always less than that of $T_{r}{ }^{\prime}$ with the only exception of $\dot{r}=n$, when $W_{n}{ }^{\prime}$ is equal to $T_{n}{ }^{\prime}$. However, the powers of both W_{r}^{\prime} and T_{r}^{\prime} are generally more than those of W_{r} and T_{r}. The results for $n=200$ are almost similar to that of $n=100$. In this case the power of W, is maximum for r ranging from 20 to 30 .

It would be seen that; in general, T_{r}^{\prime} is more powerful than any of the other tests W_{r}^{\prime}, T_{r} and W_{r}. But, for testing the randomness of a sequence of observations from a continuous population, T_{r}^{\prime} cannot be used as it becomes a constant quantity and hence its distribution does not exist. The appropriate test to be used in this situation is only W_{r} or T_{r}.

However, when we are concerned with testing the homogeneity of two samples from continuous distributions $f(x)$ and $g(x)$, it is possible to use $T_{r}{ }^{\prime}$ and in that case $T_{n}{ }^{\prime}$ would be the most powerful test for this purpose. It may be remarked that in this case T_{n} would correspond to Mann and Whitney's U-test which is closely related to Wilcoxon's T-test and for which the power, as compared to the t-test, has been shown to be equal to $3 / \pi$ for normal distributions. Thus, the tests based on $T_{r}{ }^{\prime}$ and also T_{r} and W_{r} appear to be more powerful than even the Wilcoxon's test and possibly t-test also.

As has already been explained, the asymptotic relative efficiency of two tests can be obtained by comparing the reciprocals of the squares of the coefficients of variation on the assumption that $d a_{2} / d \theta$ is constant throughout the sequence. In view of this fact, it follows that the asymptotic relative efficiency of a test can be taken to be inversely proportional to its square of the coefficient of variation. Therefore, the test with the least coefficient of variation can be considered to be the best test. Tables V to VII give the squares of the coefficiẹnts of variation (c.v.) for the different tests considered in this paper for sequences from continuous as well as discontinuous distributions. From Table V it would be seen that for $n=50,100$ and infinity, the (c.v.) ${ }^{2}$ for both W_{r} and T_{r} decreases with r, reaches a minimum and then steadily increases. However the fall and the increase in (c.v. $)^{2}$ is more rapid for T_{r} than for W_{r} in the beginning and the end, thus givinga smather value of (c.v. $)^{2}$ for T_{r} than W_{r}. But in between the values of $\left(c . v_{.}\right)^{2}$, are less for W_{r} than T_{r}, the former having the lowest value and therefore the statistic W_{r} is to be preferred to T_{r} in general. For $n=50$ and 100 ; the values of r for which $(c . v .)^{2}$ is minimum are near about 10 and 15 respectively. It would further be seen that the ratios of the minimum to the maximum (c.v. $)^{2}$ for $n=50$ and 100 vary from 5 to 8 . Since the maximum (c.v. $)^{2}$ corresponds to the Mann and Whitney's or Wilcoxon's test, for which the relative efficiency is $3 / \pi$ as compared to the t-test, it would follow that the efficiency of the tests developed in this paper appear to be more than the t-test. It may, however, be emphasized that the tests discussed here are not really comparable with the t-test because the latter completely ignores the order of occurrence of the observations while the W 's and T 's are based on the order or time of occurrence of the observations.

The tables showing the (c.v. $)^{2}$ for different values of p and q corresponding to discontinuous distributions confirm in general the findings of the power curves. The (c.v. $)^{2}$ for the statistics T_{r} and W_{r}^{\prime} is minimum for $r=n$, both for $n=100$ and 200. Examining W_{r} and T_{r} it would be seen that there is not much difference between the minimum values, though W_{r} has a lower minimum than T_{r} when p is near about $\cdot 5$. When p is far removed from $\cdot 5, T_{r}$ is minimum. These minimum values occur at $r=10$ or 15 for $n=100$. When $n=200$, this minimum occurs for $r=20$ to 30 .

Thus it would be seen that both from the points of view of power and asymptotic relative efficiency, as seen from (c.v. $)^{2}$, the tests based on W_{r} are superior to T_{r} when p is not far removed from $\cdot 5$. When p is near about $\cdot 2, T_{r}$ is better. In cases where W_{r}^{\prime} and T_{r}^{\prime} can be
162 journal of the indian socibty of agricultural statistics

Table VI
(C.V.) ${ }^{2}$ of different statistics for $\mathrm{n}=100$

Hypothesis	$r=2$		$r=5$. $r=10$				$r=15$			$r=18$		$r=20$		
	$\begin{gathered} W_{r} \text { or } \\ T_{r} \end{gathered}$	$\begin{gathered} W_{r^{\prime}}^{\prime} \text { or } \\ T_{r}^{\prime} \end{gathered}$	T_{r}^{-}	W_{r}	W_{r}^{\prime}	T_{r}	${ }^{\prime} T_{r}{ }^{\prime}$	W_{r}	W_{r}^{\prime}	T_{r}	W_{r}	W_{r}^{\prime}	W_{r}	T_{r}	T_{r}^{\prime}
$\begin{aligned} & p=.50 \\ & q=.50 \end{aligned}$	103	101	30	19	15	19	12	${ }^{-16}$	10	20	17	9	17.	23	6
$\begin{aligned} & p=.45 \\ & q=.55 \end{aligned}$	107	105	34	23.	19	24	16	21	15	24	21.	13	22	27	10
$\begin{aligned} & p=.40 \\ & q=.60 \end{aligned}$	120	118	47	37	33	37	29	35	29	37	35	27	36	41	23
$\begin{aligned} & p=.35 \\ & q=.65 \end{aligned}$	143	141	70	61	57	60	52	60	54	62	62	53	63	65	45
$\begin{aligned} & \vec{q}=\cdot 30 \\ & q=.70 \end{aligned}$	180	178	107	100	96	98	89	101	94	100	103	94	105	104	84
$\begin{aligned} & p=.25 \\ & q=.75 \end{aligned}$	238	235	165	162	156	158	147	165	156	160	168	158	170	166	143
$\begin{aligned} & p=-20 \\ & q=.80 \end{aligned}$	330	327	259	260	253	253	240	266	257	257	272	260	277	264	238
$\begin{aligned} & p=\cdot 15 \\ & q=.85 \end{aligned}$	491	487	421	430	422	418	402	443	431	425	454	438	461	435	402
$\begin{aligned} & p=.10 \\ & q=.90 \end{aligned}$	821	816	754	779	768	756	735	807	789	769	825	804	839	785	738

CERTAIN PROBABILITY DISTRIBUTIONS

Table VI-Contd.

Table VII
(C.V.) ${ }^{2}$ of different statistics for $\mathrm{n}=200$

Hypothesis	$r=2$		$r=10$	$r=20$	$r=30$	$r=40$		$r=60$	$r=80$	$r=200$	
	W_{r}	$W^{\prime}{ }^{\prime}$	W_{r}	W_{r}	W_{r}	W_{r}	W_{r}^{\prime}	W_{r}^{\prime}	W_{r}^{\prime}	W_{r}	W_{r}^{\prime}
$\begin{aligned} & p=.50 \\ & q=.50 \end{aligned}$	51	50	8	5	5	6	2	1	1	68	$0 \cdot 5$
$\begin{aligned} & p=.45 \\ & q=.55 \end{aligned}$	53	52	10	8	8	9	4	4	4	71	3
$\begin{aligned} & p=.40 \\ & q=.60 \end{aligned}$	59	59	17	14	15	16	11	12	12	79	9
$q=\cdot 65$	71	70	29	27	28	29	25	26°	27	94	20
$\begin{aligned} & p=\cdot 30 \\ & q=.70 \end{aligned}$	89	88	48	46	48	51	45	48	50	119	39
$\begin{aligned} & p=\cdot 25 \\ & q=\cdot 75 \end{aligned}$	118	117	77.	77	80	84	78	83	87	157	67
$\begin{aligned} & p=.20 \\ & q=\cdot 80 \end{aligned}$	164	163	124	126	131	137	130	138	146	218	113
$\begin{aligned} & p=\cdot 15 \\ & q=.85 \end{aligned}$	244	243	207	212	220	229	221	235	249	325	193
$\begin{aligned} & p=.10 \\ & q=.90 \end{aligned}$	408	407	378	387	402 .	419	${ }^{407}$	434	459	543	356

used, $T_{n}{ }^{\prime}\left(=W_{n}{ }^{\prime}\right)$ is far more powerful than W_{r} or T_{r} and therefore $T_{n}{ }^{\prime}$ should be preferred to W_{r} and T_{r}.

6. Summary

The paper deals with the distributions of a number of statistics $W_{r}, W_{r}^{\prime}, T_{r}$, and T_{r}^{\prime} defined for a sequence of n random observations from a continuous or discontinuous distribution. In the case of continuous distribution the observations take values from $-\infty$ to $+\infty$ while for the discontinuous case the values taken are $\theta_{1}<\theta_{2}<\theta_{3} \cdots<\theta_{k}$ with probabilities $p_{1}, p_{2}, \cdots p_{k}$ and include the cases of both free and non-free sampling. The statistics W_{r} refer to total number of positive or negative differences between all possible pairs of observations considered according to the order of occurrence in moving blocks of r contiguous observations. Thus in a sequence of n observations there will be $(n-r+1)$ blocks each yielding $\binom{r}{2}$ differences. W_{r}, is composed of the total number of positive and negative differences. (excluding the zeroes). T_{r} is obtained by taking the number of positive or negative differences between pairs of observations, x_{i}, x_{i} in the sequence such that $(j-i) \leqslant r-1 . \quad T_{r}^{\prime}$ includes both positive and negative differences mentioned above for T_{r}. It may be observed that in the case of W-statistics the difference from any pair of observations will be repeated a number of times on account of overlapping while in T-statistics any of the differences will occur once only. When the distributions are continuous, the statistics W_{r}^{\prime} and T_{r}^{\prime} are constant for a given sequence irrespective of its order of occurrence for a given r and therefore their distributions do not exist. But all the statistics are definable and useful for testing the homogeneity of two or more samples from continuous distributions. This is done by pooling the samples together and arranging them in ascending or descending order and identifying the observations as $1,2,3$, etc., according as they belong to samples $1,2,3$, etc., respectively as in the case of Wald and Wolfowitz's U-statistics.

It has been shown that the distributions of all these statistics tend to the normal form as n tends to infinity. The standardized deviates of these statistics can serve as tests for examining (i) the randomness of a given sequence of observations and (ii) the homogeneity of two or more samples.

Detailed examination of the powers and asymptotic relative efficiency (A.R.E.) of these statistics shows that whenever W_{r}^{\prime} and $T_{!}^{\prime}$
are applicable, $T_{r}{ }^{\prime}$ is the most powerful of all the tests for $r=n$. Though W_{r} and T_{r} are less powerful and less efficient than W_{r}^{\prime} and T_{r}^{\prime}, in general W_{r} is more powerful and asymptotically more efficient than T_{r}. The powers and A.R.E. of W_{r} and T_{r} increase with r, attain a maximum and then gradually fall off. The maximum power and A.R.E. attained for W_{r} and T_{r} are much more than those for Mann and Whitney's or Wilcoxon's test the A.R.E. of which as compared to t-test is $3 / \pi$. The corresponding A.R.E. for W_{r} or T_{r} having maximum power appears to be more than unity. In fact, even for the minimum value of r, that is 2 , the power and A.R.E. for W_{r} and T_{r} are slightly more than those for $r=n$ which corresponds to Wilcoxon's test.

Thus the statistics developed in this paper lead to non-parametric tests which are more powerful than those developed so far. Further investigations are in progress.

Our sincere thanks are due to Shri S. P. Varma for having helped us in the tedious calculations regarding the powers and A.R.E.'s given in this paper.

References

Dixon, W. J. .. "Power functions of the sign test and power efficiency for normal alternatives," Ann. . Math. Stat., 1953, 24, 467.
Kendall, M. G. .. The Advanced Theory of Statistics, Charles Griffin \& Co., Ltd., London, 1945, 1.
Krishna Iyer, P. V. .. "The theory of probability distributions of points on a line," J. Ind. Soc. Agri. Stat., 1948, 1, 173.
—_ .. "Further contributions to the theory of probability distributions of points on a line," Ibid., 1950, 51 and 52, 2, 3 and 4, 141, 80 and 50.
-.. "Some distributions arising in matching problems,' Ibid., 1954, 6, 5.
——and Kapur, M. N.

Kruskal, W. H. .. "A non-parametric test for the several sample problem," Am. Math. Stat., 1952, 23, 565.
——and Wallis, W. A. "Use of ranks in one criterion variance analysis," Jour. Ann. Stat. Assocn., 1952, 47, 583.
Mann, H. B. and Whitney, "On a test whether one of two random variables is D. R.

Mood, A. M, \quad : "The dıstribution theory of runs," lbid, 1940, 11, 367,

Mood, A. M. .. "On the asymptotic efficiency of certain non-parametric two sample tests," Ibid., 1954, 25, 514.

Pitman, E. J. C. .. "Lecture Notès on Non-Parametric Statistical Inference," University of North Carolina, Institute of Statistics (1948).

Rijkoort, P. J. .. "A generalization of Wilcoxon's tests," Proc. Kon. Ned. Akad. Wetens Chappen (1952), A 55, 394, 1952.
Singh, B. N. .. "Use of complex Markoff's chain in testing randomness," J. Ind. Soc. Agri. Stat., 1952, 4, 145.

Stuart, A. . . "Some quick sign tests for trend in location and dispersion," Biometrika, 1955, 92, 80.
Wald, A. .. Sequential Analysis; John Willey \& Sons, New York, 1945.
—— and Wolfowitz, J. .. "On a test whether two samples are from the same population," Ann. Math. Stat., 1940, 11, 147.
Walsh, J. E. . "On the power function of the sign test for slippage of means," Ibid., 1946, 17, 360.

Whitney, D. R. . "A bivariate extension of U-Statistics," Ibid., 1951, 22, 274.
Wilcoxon, F. .. "Individual comparisons by ranking Methods," Biometrics Bulletin, 1945, 1, 80.

[^0]: *Now in the Indian Standards Institution.

