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INTRODUCTION

- THE distributions of a number of statistics defined for a sequence of

n observations x;, X,...x, taking any of the values 6, 0,, 05...6,
with fixed or varying probabilities have been considered by Krishna
Iyer (1948-54), Mood (1940) and others. These distributions refer
mainly to statistics obtained by considering the relations between
adjoining observations as in the case of a simple Markoff chain. For
a binomial sequence, Singh (1952) has discussed some distributions
based on the relationship between three adjacent observations. Similar
distributions of a wider nature have been discussed by Kendall (1945),
Wilcoxon (1945), Mann and Whitney (1947), Rijkoort (1952), Kruskall
(1952), Mood (1940), Stuart (1955) and others. Kendall’s (1945) rank
correlation 7 is based on (x — y) where x and y are the number of
positive and negative differences between any two pairs of observa-
tions for a random sequence drawn from a continuous distribution.
For two random samples x and y from a continuous distribution
F (x), Mann and Whitney (1947) have considered the U-statistic. This
statistic is defined as the number of times that the y’s precede the x’s
when the two samples x and y are pooled together and arranged in
ascending or descending order. Another statistic T, closely related
to U, was given by Wilcoxon (1945) earlier, where T represents the
suin of the ranks of y’s when the two samples taken together are
arranged in ascending order. It has been shown by Mann and Whitney
that -

U=mn+ M0+

2 T

* Now in the Indian Standards Institution.




128 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

where »n and m are the sizes of the samples x and y. Whitney (1951)
has extended the U-statistic for three samples, x, y and z by introducing
the statistics U and V, where U and V represent the number of times
that y and z precede those of x when the three samples are pooled and
arranged in ascending order. Rijkoort (1952) generalized Wilcoxon’s
test to k samples by taking the statistic
s =3 (s; — mF)?

~where F=1CEn,+1)=21@m+ 1), s; is equal to the sum of the
ranks of x;; and n; is the size of the sample x;. - Kruskall and Wallis
(1952) also have considered similar statistics. Mood (1954) has used
a similar method for testing the difference in the dispersion of iwo
samples x and y. This test depends on

n 2
WZZ ri_m+;i—l‘)7
i=1

where r; is the rank of the ith observation in y when x and y are arranged
together in order of magnitude. '

It would be seen that the work done so far for a sequence of obser-
vations related mainly to distributions based on the relations between
either adjoining pairs or all possible pairs of observations from a conti-
nuous population. The purpose of this paper is to investigate the possi-
bility of developing non-parametric tests more powerful than the existing
ones by studying the distributions of a number of new statistics arising
from a sequence of observations from a continuous or discrete
population by taking the differences between all pairs separated
by r or less number of observations. The value of these statistics for
testing the randomness of a sequence of observations or for examining
whether two or more samples belong to the same parent population
has been investigated by working out the power and the efficiency of
the various tests arising from this investigation.

2. . DIFFERENCES BETWEEN THREE SUCCESSIVE OBSERVATIONS
A. Positive or negative differences

A given sequence of n observations can be considered as (n — 2)
sets of three successive values. Each of these sets gives three differences
which are either positive, negative or zero. By considering the number

of positive or negative differences in the (n — 2) sets we shall define
two statistics, W, and 7, as follows:—

W3:X1+X2

T, = X'+ X,
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where
(12) +2(23) +2(34) +..
+2(nm—2, 11—1)+(n——1 n)

X =12+ @)+ EH+....
+@—=2n—1)+@—1,7)

=)+ + G+ F (1 =2n)

and (rs) represents the sign of the difference between the r-th and the
s-th observations of the sequence and is assigned the scores 1 or 0
according as (x, — x,) is positive or otherwise when the distribution
considered is that for positive differences. While considering the dis-
tribution for negative differences the scores assigned to (x, — x,) are
— 1 or 0 according as (x, — X,) is negative or otherwise. It may be
noted that W, represents the total number of positive or negative differ-
ences arising from the (n — 2) moving sets or blocks of 3 consecutive
observations. The differences considered in the s-th set are those
between the observations (s, s +1), s+ 1, s +2) and (s, s+ 2).
T, represents the total number of positive or negative differences bet-
ween any two observations » and s such that s — r <C 2. The probability
and the moment generating functions (P.G.F. and M.G.F.) for the
distributions of W, and T, obtained by the methods developed by
Iyer (1950) are given below:—

(@) P.G.F. and cumulants of W3 Jfor two and three characters.—

Assuming ¢ (n) to be the P.G.F. of W, for n observations which
take the values 8, and 6, with fixed probabilities p and ¢, the following
recurrence relationship holds good for this distribution:—

d(n+.3) —¢@m+2)+pg(l —EH¢@n+1)
+pgf (1 — O () — P2 (1— O —1) =0 (2.1)

where
p@ =pm0)+Eépm 1)+ &p»2) +

and p (n, r) is the probability of getting r positive or negative differences
for W, from n observations. The distribution of W, forn 2 5 can be
obtained in succession from those of the lower values, viz., n =4, 3, 2
which .are actually determined by examining the different possible
arrangements. ' -

The difference equatlon for the M.G.F. is the same as (2. 1) w1th
¢ replaced by ¢'. Thus the M.G.F. forA Wyis- '

9
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Mun+3))—Mmu+2)+pgt —e¥YMm+1)

+ pge® (1 —eY M (n) — plg®e® (1 — ¥’ Mn—1)=0
S (2.2

' e 3
M) =1+t ) + 5 ) + G0 )+ ...

The solution of (2.2) is given by ,
M (n) = cja,™ + co0" + c305" + Cuaq" ' 2.3)

where a;, ag, aj, a, are the roots of the characteristic equation of the
recurrence relation (2.2), wiz.,

xt —x% + pg (1 — ) + pge® (1 — &)

—pget (1 — e =0  (2.4) -

and the ¢’s are constants determined by equating (2.3) to the actual
M.G.F.s for n =4, 3, 2 and 1. '

When ¢ =0 (2.4) has all the roots, excepting one, equal to zero.
If this non-zero root is a;, then

G ) ;
= ¢ja,"B say.

‘Taking the logarithm of M (n), we get the cumulants of W3.-

The r-th cumulant, «,, is equal to

d ra d
[dt' log M,,] s [dt' log cl] +n [dt' log al] »
d
o N —i—[dt,logﬁ] e
It can be easily seen that
. ”
[dt, log ﬂ] =0 — 0

so long as ¥ <m, as a,, ag and o, are zero when ¢ = 0. Therefore (2.5)

reduces to .
[d 1 ] + [d 1
77l a n og a1:| -




CERTAIN PROBABILITY DISTRIBUTIONS - 131

When # is large, the contribution of ¢, will be negligible compared to
n and therefore , .

~ [dr lo ]
. K dtr g (11 =0

[ 1oz ]
dr* 0g ay =0

can be obtained by differentiating the characteristic equation of the
M.G.F. r times with respect to ¢ as has been indicated in a prev1ous
publication by Krishna Iyer and Kapur (1955). This aspect is being
discussed in greater detail in another paper to be published shortly
in this journal. It may also be noted that by taking (d'/d€" log ay)
‘we get the factorial cumulants «p,; and the relation between the factorial
cumulants and the ordinary cumulants is given by

i = ki + kpeeqy 407 + kg 4207+ kg L0,

where 4°0" is the s-th difference of O.
For three characters the recurrence relationship for the P.G.F.
of W, is =
[E* — E*+ E" (1~ &) Epop; + B (1 — (82 pip,

—P1paps (L + 26 + 382 + €3 (1 — 9} — EP& (1 — &2

X{Zppf + pipaps (2 4- 26 + £} — E*E2(1 — €)° pypops

X{& = (1 = ) Zpip;} + B4 (1 — €)° pypaps {Zpip;

T E( = Opipopst — B4 (1 — (1 + &) pip,°ps?

— B¢ (1 — €)° pip.2p,? 2 pip - .

+EU— O g~ =0 (2.6)
where E stands for the usual operator defined by

E¢(n) =¢n+ 1),

2 pipi = Prpe + P1ps + papy

Now

and
2 pilp = pips? + Pa* ps® + pipg?
The first four asymptotic cumulants for two characters calculated
by the method given above are noted below:—
ok =3npg; wky=npg (9 — 3lpg)
3 = npq (27 — 297pg + 132p%% } 2.7
1y = npq (81—2197pq+14376p2>—27474p3¢")
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The exact expressions for i, «, and 4 for any number of characters
for free sampling (i.e., fixed probabilities) are as follows:—
k=3 —2)a,
Ky = (9n—22)as+(22n—70) ag—(31n—92) a5’
kg =6(15n —52)A 4 54(3n — 14) B
+3@—8C+60Bn—28.D
+24m—3)F+ 123 —11)G
+48m—4HH+12m—3)N

(2.8

where
ay, =2 pip;, Az = ZpipiDrs Gy = 2 pipipi s
A= (1 —2a) (a; — @), B=a, — 2a3a, + a,°
C=a,(1 —ay) (1l —2a,), D=>1—2a,)(az + a3 — 2as?)
F = ag — a, (ay + 2a3) + 2a,°
= (Zplpips + Z pipipi® + 4as) — ax (2 pip; + Zpipst
+ 8ag) + 4a®
(Zpa 'pipx + 22 pipipe + 2 pipip’ + 6ay)
—ay (X plp; + 2pip? + 6ay) + 2a5°
= (& p; p,2+227 pipspitZ pipfpt-2Z pip;pi®+-5a,)
— ay (Z pip; + 2 pip?+ 4a,) + as
By putting a, = § and ag = 1/6 in the above expressions, we obtain
the cumulants of W, for a sequence of observations from a continuous
- population.
For non-free sampling, i.e., when the number of observations
taking the values of 6y, 0,....0; is ny, ny, ... .7 respectively such that
Zn,=n, x; and «, reduce to

. _ 2 n.;’nj
Ky = (9n — 22) ?1‘1’11"]1)

+(9n2—6Tn—128) 2& ("i) (}1)_"12)("(:”—_1;) |

2 nnn
g 42 (9n2—56n4-93) — =0k
( ) 2= 1=
2 mipngm

—1) (n—2) (n—3)
o ' Zun; 2 :
—[S(n )n(n——l)]

2.9)

—2 (9n2—6Tn-+128) e
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The above values have been obtained from the iincorrected moments
about the origin zero by substituting

frl;, (81, [21 S o
(i (7 i {7 " . .
- 1n['—+8+'+' ] fOI' Pirpjspk‘- .o : (2. 10)

in the moments about the origin. zero for free sampling.

(b) P.G.F. and cumulants for Ty—The recurrence relation for the
P.G.F. of the distribution. of . Ty for two characters reduces to

$(n+3)—¢d(m+2)+pg(l —H¢(m+1)
Fpg (1= ¢ ) = P (16" $ (n—1) =0 (2.11)

The asymptotic values of the first four cumulants are

ey = 2npq (4 — 45pq + 113p*q®

Ky = 2npq, xy = 2npq (2 — Tpq)
} (2.12)
i, = 2npq (8 — 223pq + 1554p%¢® — 2910p%¢*)

The actual values of x; and «, for k characters or variables are
as under :—

K =Qn—3a, 2.13)
= (4n—T7) ay+2 (5n—14) a;—7 (2n—5) a,? } @
For non-free sampling «, and «, reduce to
_ _ 2 mny
, = (2n — 3) n—1
Z'mn,
=({4n —-7) —=
( ) R —1)
{21, [2]
; + (4n® — 26n -+ 44) Z s m”’
- 2 ningn 219
4 k
2 (@dn* — 21n + 30) [3; :
2 (42 — 26 + 44) 21
[Y R 4 2 .
3 ‘ . B [(2}1 _ 3) 2”1’1, ]

nn—
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B. Positive and negative differences

Assuming W, and T, to be the statistics corresponding to W,
and T, obtained by taking positive and negative differences from three
successive observations, the P.G.F.’s and the cumulants of the two
distributions for two or more characters are noted below:—

P.G.F. and cumulants of W' for two and three characters.—For
two characters the recurrence relationship reduces to
¢ (+3)—¢ (n+2)+pg (1—£%) ¢ (n+1) +pgé* (1—€) ¢ (n
— PPl — P (n—1)=0 (2.15)
For three characters the recurrence relation is given by a 9X9
determinant which on expansion reduces to
[E° —ES+ E"(1 — ) a, + ES{&* (1 — &) a, — (1 — 38
+ 28 pipepsy — E5. €4 (1— H {1 — &) (1 + &) Zpipf
+ (2 + 26 — € — 3 prpaps} — E* 1 (1 — £ prpaps
X (B +28) — (1 + O (1 + & —26) ag) + E°. 65
X (1 — &P pypaps {(1 + O (14 28 ay+£ (2 + 3¢ + 3¢
— (1 + £ ppops}
—E%8 (1 +26) (1 — &P (1 — &2 — &) pipips*
— EE2 (1 — 6 (1 — &) (1 + 28 pip’psia.
. + 12 (1 — §° (1 + 28°p°p’p’1 ¢ (n —1) = 0 (2.16)
where
ay = p1ps + P1Ps t P2Ps

The asymptotic values of the first four cumulants for two characters
are as follows:—

kg = 8npq (27 — 302pq + 732pq?)

x; = 6npq, k, = 4npq (9 — 31 pq)
} @-17)
ke = 16npg (81—2707pg+16692p%g>—31986p%?)

The actual values of the first and second cumulants for any number
of variables or characters are given below for infinite or free sampling:

k=61 — 2)a,

} (2.18)
ey On—26) ap+-6 (13n—40) ay—4 (31n—92) a2



CERTAIN PROBABILITY DISTRIBUTIONS

For finite sampling the above formulz reduce . to

. 2 mn;
Ky = 6 (n - 2) n—(n———B
X
K2=4(9I’1—26)n—(n—)
+392) 2 e

-+ .(36n% — 268n + 512)

+ 2 (36n2—268n--512)

— [6 o —2)
P.G.F. and cumulants of Tj'

X Fghy

(

42 (36n2 — 2297

;L2 ,,,[2]

2 mnimam

Al

. 135

(2-19)

The recurrence relation for two characters for T, is “given by -
¢ (n+3) — ¢ 4+2) + pg 1—£% ¢ (n+1)

+pa (1= ¢ () — 22 (1 — )¢ (n — 1) =0  (2-20)
The first four asymptotic Values of the cumulants for two characters

reduce to

Ky = 4npq, x3 = 8npq (2 — 7pq)
kg = 16npq (4 — 45pq + 113p%%»
xy = 32npq (8 —223pg-+1494p?q2—2910p3¢®)
The actual first and second cumulants of Ty’ for free sampling for

k characters are
K1=2 (2” -—_ 3) (12

!
ka=2 (81—19) a,+12 (3n—8) a,—28 (2n—5) a,2§

For finite sampling «, and «, work out to

ey =2 (20 — 3)

PN n,;nj

Ky =2 (8n — 19) ~

“—}— (16n%—104n-176)

— 2 (16n*—104n+176)

— {2 @n — 3)

nn—T1)

+ 2 (16n*—86n+4-128) =12

2 nyny

[3]

S|

ot

np—1

2 nnny,
X n,l2 ]nJ[ 1

2 Ringn

} (2-21)

(2.22)

@2
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3. DIFFERENCES BETWEEN F SUCCESSIVE OBSERVATIONS

In the previous section we considered the distribution of the num-
ber of positive or/and negative differences arising from three contiguous
observations in a given sequence. We shall, now, investigate the dis-
‘tributions of W, W', T and T’ for the general case of r consecutive
observations. No general expressions, which will hold good for any
value of r, exist for the variance and other higher cumulants of these
distributions. In fact the results for the variances and higher cumu-
lants for < (n/2 4 1) and r > (nj2 + 1) differ and therefore we give
the variances for the different distributions for these two cases sepa-
rately. The exact probability generating functions and the recurrence
relations satisfied by them for any value of r are rather complicated
and, therefore, have not been discussed in this paper. We shall, how-
ever, discuss these distributions by obtaining their first and second
cumulants and examining the nature of their higher order cumulants.
It may be noted that for r = n, the distributions of the number of
positive or negative signs for a continuous distribution is the same -
as that considered by Kendall (1945) in his discussions on rank, cor-
relation coefficient 7.

A. Positive or negative differences

' (a) Statistics W,.—Let x;, Xp....Xx, be a given sequence of ob-
servations taking any one of the values 6y, 0,, .... 6; with. probabilities

k
P1s Pss'** D subject to the condition 2 p, = 1. Consider the signs

i=1

of the différences (taken in the same sense or order) between all possible
pairs of values arising from moving sets or blocks of r consecutive
observations. The number of blocks that can be taken in such a scheme
is (n —r 4 1). We shall now deal for the (n — r 4 1) blocks the
distribution of the total for the number of positive or negative differ-
ences obtained by taking all possible differences from each of the
(n — r + 1) blocks of size r.

The distribution of the number of positive differences is evidently
the same as that for negative differences. Taking r<C (n/2 4 1), let
X,, Xp, -++ X . be defined by the relations
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X, =(12)4+2@23)+3 @4+~ _
+(r—1) (r—1, »)+r—1) (r, r+1)
++0=1) (r—r+ 1, n—r-+2)

+ (r—2) =142, n—r+3)+- -+
+ 3 (-3, n—2)+2(®m—2,n—1)
+ (n—1, n)

X, = (13)4+2 29)+3 35)+- -

+ r—=2)(r—2,N+0—2) (r—1, r+1)
+ o+ (—2) (n—r+1,n—r+3)
+(r=3)(n—r+2, n—r+4) +---
+2m-3,n—D+n—-2,n

X3 = (14942 (25)+3 (36)+ - -

+ (r—3) (r—=3, N+0—3) (r—2,
rD4 o+ —3) n—r+1, n—r-+4)
- (r—4) (112, 5 -
+2m—4,n—1)+(n—3, n)

3.1

X =, r—D4+22, N4+2G, r+D+...
+2m—r+1, n—+n—r+2, n
Xy = (1, N+Q@, r+D)+G, r+2)+... '
+ (n—r+1, n)
where (i j) denotes the difference between the i-th and j-th observations
and assumes the value 1 or 0 according as.(x; — x;) is positive or other-
wise, if the distribution considered is that for positive signs. If the

distribution consiaered is that for negative differences the scores given
to (x; — x;) are —1 and 0 according as (x; — x;) is negative or otherwise.

The expectation for the total number (W,) ' of positive signs in
(n —r - 1) moving blocks or sets, each consisting of r consecutive
observations, is given by

h=1

E(W)=E Z,'X,.) ——r+1) (;) a (3.2)

where a; = 2 pip;.
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evaluating

[Zom- n]

variance reduces to

ky {Variance of a positive difference like (12) from two
observations} + 2k, {covariance of two positive differ-
ences like (12) and (23) from thres cbservations} + 24k,
{covariance of two positive differences liks: (12) and (13)
trom three observations} -+ 2k, {covariance of two posi-
tive differences like (13) and (<3) from thiee observations}
or symbolically

ky var (53) + 2k, cov (x X% + 2kg cov (%)
12 1 23 123

+ 2k, cov (iy)

123

The variance and the covariances for these coafigurations are
in Table I.
TABLE 1

Variance and covariances for different configurations

Configurations Variance or Covariance: Remarks
A as(l—az) az =3pid;
- az—ag® a3 =Zpipipu
2 Spipi2+2a; —as?
A 22ipit 2a3—ap®

We shall now obtain the values of &y, ks, kg and k.

k=3 {2';2'41_32 =B —2r 2_)}

k=1

=%2 r(r—1){2n@Qr — 1) _ r(5r — 7}

The variance of the distribution for 7 = 2 X; can be cbtained by

(3.3)

Expanding (3.3) in terms of the substitutions given in (3.1) the

3.4

where ky, k,, k3, k, represent the number of times that the configura-
tions associated with the respective k’s would occur in the distribution.

given

(3.5)

o
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To determine k,, we have to enumerate the number of ways in
which any two observations, one on each side of the (» — 2) central
values of the sequence, get associated with one another in the distribu-
tion under consideration. It can be seen that tor the s-th observation,
s< (r — 1), this number is equal to B

s(s—=1 s@r—s—1) .
> T -

The contribution in k, tor s < (r — 1) is g_fvén by

rds@s--1), s@2r—s—1)
Z 2 2

- %6 P = 1) (- 2) Or2 = 8r +3) 3.7

On account of the symmetry, the contributions in ky for the first and
the last ( — 1) observations are equal. [The (n — 2r 4 2) observa-
tions in the centre will make a furthe: contribution of
(n—2r+2)r*(r —1)?
‘ 4
to k,. Hence N

(3.8)

ke = g5 7 (r = D (r = 2) (9r* — 8r +3)

CtiG-2wEe—1 (.9)

The values of k, and k, are equal and k; can be obtained by noting
the number of times that oneobservation gets associated with any
two observations to its right in the distribution. The s-th observa-
tion (s<<r — 1) can be associated with the remaining observatlons
to the right of it in

) ey

s—2 ' 2 -
( —(2)} (3. 10)-
ways. Now (3-10) reduces to ‘ :

K% > —25_ 1)) -9 (5) *(5)} - .'(3-:11).
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The contribution in kg for s<<(r —1) and > (n —r + 1) is

L) —emay - o)
G B I

_éo Fr—1)(r—2) A2 — 17r 4 12) (3.13)

For (r — 1) <s<(n —r + 1), the contribution in k; is

f/(re—n e
(n—2r—l—2){<2 ) >_(g)} : AL

The sum of the expression (3-13) and (3.14) is k.

Multiplying the k’s by the respective variance and covariances
of the configurations and simplifying, we get the variance or the second
cumulant of W, as

Ky =

60 r(r—1[5{n (%r — 1) —rGr—7}(a, — ad

F2{r—D O ~8r +3)+ 150 —2r+2)
X r(r — 1)} (a3—as?) + (r—2) {(11r2—17r-+12)
+ 5 (n—2r+2) Gr—1)} (@ t+as—2a,)] = (3-15)

where the a’s are monomial symmetric function in p’é

The general expressions for the 'mean and the variance of W,
obtained above aré valid only so long as (n —2r +2) >0o0rr< (n2+ )
 because when r exceeds (n/2 + 1) the cquations given in (3.1) do not

hold good.. Consequently separate formule have to be developed -

to cover this, case.

When r > (#/2 + 1), for convenience we shall take the size of the
blocks to be r =(n — R). Let X;, X,, -+ X,—,; be defined by a
- set of equations similar to (3.1) the coeﬁicwnts of which are represented
by the followmg pattern:—

Va

%
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123 R R+1), (R+1)-
(R+1), R,(R—1)--4321
123 RER+1), R+1)----
RR—1,(R—2)-321
SRR+ D, R+1)
(R—1),R,(R—3)--2 1

“RR+1, (R+1)
“+R(R+1R

There are (n — R — 1) rows in all. The first row contains n—1
values having (n — 2R — 1) central values equal to (R 4 1); the
second (n — 2) having (n — 2R — 2) central values equal to (R + 1),
and so on; the last row having (R + 1) values all of them being equal
to 1.

Proceeding on the same lines as in the previous case, we obtain

EWd =&+ ("5 ) a

& (Was) = g (R + 1) [5 (6% (R + 1)

— 21 (8R? + 13R + 3)

+ R (11R2+25R+12)} (a,—as?)

+ 2 {10n3 (R4-1) — 30n2 (R+1)*

+ 51 (6R® + 20R* + 20R + 4)

— R(11R® + 54R® + 81R + 34)}
. '. X (a3 — a®) + (20n3 (R + 1)

' — 10n* (TR>+14R+6)+10n (8R?

+ 25R® ++ 22R + 4) — R (29R®

+ 131R® 4+ 184R + 76} (a, + a,

' — 2a,%)]

N anas )

(3.17)
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(b) Statistics T,—Let T, stand for the total. number of positive
or negative differences between the pairs of observations i and j such
that j — i< (r — 1) and each difference occurs once only. Then
taking the case of r < (#/2 4 1) and as in (a) above let X3, X, -+ X,
be defined as follows:— ‘

Xy = (12) + @3) + G-+ — 1, )
Xy = (13) + Q4 + G5+ +n —2,7)

Xy = (14) + (25) + (36)+ -+ +(n — 3, 1) :
.......................................... (3.18)

X = (D) 4 Qor 4 D+ Gyr Do
+ (n —r+ 1’ I‘l),

where, as before, (ij) takes values | or 0 according as (x; — x;) is posi-
tive or otherwise.

Proceeding on the same lines as in the case of W, we get
E(T)=%0—-1)@n—r)ay
1o (T) =% (r —1)[3 2n —r) (@ — a,°)
+12¢ —1) (n—r) (a3 — a5®)
+2 (r—2) Bn—2r) (a3 +a;3—2a,7%)]

‘When r > (#/2 + 1), say equal to (n — R), we have the following
results for the mean and the variance of T,—,:

E(Twr) =30 —R—1D @+ R)a,

1 (Ty—g) = % [3 (n—R—1) (1+R) (a,—a,%)
+2{n@m—1)m—2)—2R(R-1)
X (R+ D} (a; —a)+2(n — R
—1D®m—R—2)(n-+ 2R
X (as + az — 2a,?)]

B. Positive and negative differences

(3.19)

(3.20)

. (@) Statistics W,'—It may be noted that the total number of
positive and negative differences between pairs of observations in blocks
of length r is also equal to the number of times that pairs of observa-
tions of different kinds, like / and j, occur in the distribution. In this
case (i) defined earlier will assume the value 1 if |x; — x;| isnot equal
to zero and O otherwise. Let W, represent the total number of posi-
tive and negative differences obtained from the (n — r - 1) blocks
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4

in the given sequence. When r < (n/2 + 1), the first two cumulants
of this dlstrlbuuon can be evaluated by using the resultq obtained in
sub-section " (a) of (A) above as follows:—

Replace a, by 2a,; (a, — a,®) by (2a, — 4a,®) and each of

(a3 — a,®) and (@, + a5 — 2a,%) by (a, + 3a, — 4a,?) respectively 'in

r‘ the expressions for E (W,) and «, (W,) because in this case also the same

. types of configurations ; &, 77, @ and ™ would be  involved
with the above expectations. On making these substitutions -

EW)=wm—r+Dr{r—1a,
ke (W y=%r(r — D{2n@r — 1) — r (5r
’ — D (@, — 2a,%) + {(r —2) @) (3.21)
=S5+ 3D+2m—2r+2)3r2
— 5r 4+ 1)} (ap + 3a; — 4a,?)]

|
|
|
g When r > (n/2 + 1) and equal .to (n — R) sav, we get the fol-
L
[
|

lowing values for the mean and the variance:—
. O EW.=R+D@—R@—R—1)a,
iy (W,n—R) = % (R -+ 1) [{6”2 (R+1) — 2n (8R2

~., ' .~ + 13R+3)-+ R(11R® + 25R
L ' F12)} (a, — 2a53) + {6n® (R+ 1)
l © — 2n® (I0R2+20R-+9)+2n (11R3

+ 35R* + 32R + 6) — R(8R®
+ 37R® + 53R + 22)} (a, - 3a,
— 4a,?))

(3.22)

(b) Statistics T,'.—In this case the furmulaa reduce to the following
when r < (/2 + 1):—

ETH=0¢—-1)Q@r—1r)a,

-t ' K (TN=%0—D[3€ —r) (flz. — 2a,%)} (3.23)
: 4+ 2431 (2r—3) —r (5r — D} (a,
- + 3a; — day?)]
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When r > (/2 + 1) equal to (n — R) say, we have
E(T)-p) = —R—1)(n+ R)ay 7
kg (T"sp) = 3 [3 (n=—R—1) (n+R) (a:—2a,?)
+ {3n3—9n%—6n (R2—|—R—1)+2RJ
X (R+1) (R+5)} (ag+3ay—4a?))/

The corresponding values for non-free sampling can be evaluated
by making the substitutions meniioned in (2.10). °

(3.24)

In the above discussion we have not obtained the higher cumulants
which will give an idea of the nature of distributions. It can be shown
fiom considerations. discussed in a previous paper (1952, that for all
the statistics dealt in this paper the cumulants are linear functions in
n when r < n/2 + 1 and the highest degree of r in the z-th cumulant
associated with » will be (2¢ 4 1) for W and W’ and (¢ + 1) for T and
T'. It follows from this that

Vi (W or W') = ./2 ~0 7T

1 l)t/2—1 .

’ | \#-1 (3.25)

- (T or 1) =z~ ()

and they tend to zero as n tends to infinity for any value ofr <nf2+1.

A similar argument holds good for » > n/2 + 1. Hence the distribu-

tions of all the statlstlcs cons1dered in this paper tend to the normal
form.

It may ‘further be observed that these statistics are consistent both
in the usual sense and also in the sense defined by Wald and Wolfowitz
namely that the probability of rejecting the null hypothesis when it is false
should approach unity as the sample size tends to infinity. As regards
the former, it can be established with the help of the Techebycheft’s
Inequality and the latter by using the technique of Mann and Whitney
in a similar manner as has been done in an earlier paper (1954). .

(¢) Number of zero differences and covariances between the number of
positive and negative differences.—It may be noted that the total num-
ber of positive and nega.ive differences together with the numbe: of
zero differences is constant for a given sequence of obseivations and
- therefore we do not gain anything by discussing -the distribution of
Zeroes.

1t may, however, be added that the covariance for pcsitive and
negative differences would be helpful in devising a comprehensive method
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of testing the randomness of a sequence of observations. Therefore,
_the covariances for positive and negative dlﬁ'erences are given below:—

When r< (n/2 + 1), we have

cov {W, (+), W, ( =)}

' ,r(r 1)

cov {T; (+),

cov {T

10‘

_ (= = 1) [{6n (}- —1) - 6;‘ (1‘ _“l:)} as.

[{15nr (r —1) — (2173 — .34;;2-

+ 11r + 6)} ay + {5n (92 — 17r + 4)
— (59r% — 156r% + 99¢ + 14)} a4

— 5{2n(6r® — 8r 4 1) — (16r3 — 33r2
+ 15r + HYa?]

T, (-}

(3.26)

4 {61 (3r — 5) — 2r (7r — 1D} ay
— (4 — 5) (61 — 5¢) ay?]

When r> (n/2+4 1) and equal to (# — R), we get
cov {Wn-'R (+)s R (_')J

(R+ D [10n% (R + 1) — 3082 (R + 12|

4 101 (3R® + 10R® + 10R + 2)
— R(LLR® - 54R® + 81R + 34)} a,
+ {5013 (R + 1) — 10n® (17R? + 34R.
+ 15)+10n (19R3+60R2+54R -+ 10)
. R (69R%+-316R*-449R+186)} 4,
— {60n® (R + 1) — 10n% 0R* -+ 37R ) (3.27)
+ 15) 4 10n (22R*+62R*+51R - 9)
— R (80R®+315R*+405R+160)} a,?]
o (4); Tacn (=)}
=} [{ (1—1) (1—2)~2R (R—1) (R+1)} g
4 {5n3 — 15n% — 2n (6R? + 6R — 5)
4+ 6R (R® + 4R + 3)} ay — {6n3— 15n2
~ 31 (4R*+4R—3) + R (4R* 4 2IR
+ 17} ay*]
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4. APPLICATIONS

The statlstlcs w,, W,,, T ", T," considered in the pravious sectious
can be used for testing (1) whether a given sequence of ‘observations
is random ‘or not and (2) whether two or more, samples can be treated
as samples from the same populatisn. The ‘rest for ‘randomness of
a given sequence consisis in noting the obseived Values of W’s or T
and compaung them with their expected values on the basis of their
variances: on the assumption that the standardised deviates of the sta-
tistics are distributed normally. As regards (2) the - procedure is to
pool together the various samples and arrange them in ascending or
descending order indicating the samples to which 1hese observations
belong by designating the samples by 1, 2, ewc...... .In this set-up
Wwe obtam a sequence of observations for the charactexs 1, 2, etc. We
then examine whether this sequence is random or not, by the statistic
W, W', T or T’ for the characters 1, 2, etc. It may be noted that in
arrangipg the samples in- this manner it will not be possible to have
a unique arrangement when the samples belong to discontinuous
populations. In this case we shall take the average of the observed
W, W', Eor T, as the case may be, for the different possible arrange-
ments. Alternatively, the test may be applied by considering the first
part of the sequence as Sample I and the second part as Sample II,
and r being equal:to n; + A, where n, is the size of the ﬁrst sample and
h < n,, the size of the second sample. _

A more CQmprehenswe test than the one given above can be had
by examining the-significance of the difference between the observed
number x of positive and y of negative differences obtained for the
statistic W, (or 7,) on the basis of the following bivariate statistic

1, i {(x—;n)‘l 4 (y~m)2 — 2 (x—m) (y— m)} @.1)

I —p o, o, G0y
where x and y, as already explained, stand for the observed number of
positive and negative differences in W, (or T,) in the given sequence;
m and ¢® for the mean and the variance for W, (or T,) and p is the coi-
relation coeflicient between W, (+) and W, (—) [or T, (4-) and T, (—)].

Now the question as to ‘which statistics should be used in actual
practice can be decided only after examining their powers for different
alternatives and their asymptotic relative efficiencies. These aspects are
considered it -the .next section:

5. “POWER AND EFFICIENCY OF THE STATISTICS

A number of non-parametric tests has been developed during
the past two decades for testing the randomness of a given sequence of




CERTAIN PROBABILITY DISTRIBUTIONS 147

observations and the hemogeneity of two or more samples. The
eﬁicwncy of these tests can be studied in general by examining the power
curves for different types of alternatives. The possible - alternatives
here, unlike the parametric tests, are many and it is p0551b1e that a test
which is efficient for one type of alternative may not be’so for’ another
type. The alternatives mostly conridered are either normal or normal
regression. In normal alternatives the distribution of the parent popula-v
tion is assumed to be normal while in the other the assumption is that

‘,,;—(1.+BX,;+E¢ (l"—laza_ ) (51)
where ¢; is distributed normally with zero ‘mean and unit variance.

As the calculation of the actual powers is very _cumbersome,

.- Walsh (1946) suggested that the relative efficiency of thfe;'tests can be

-obtained by comparing the sizes of the samples require’c:i"for a.“given
power against a given type of alternative. Two powerzcufves are
considered to be equivalent if their average height is ‘the same.
Dixon (1953) has pointed out that the equivalence by averaging process
disguises the differences in the shape of the cuives. He has, therefore,
suggested that it would be more realistic to define a power: efficiency
function - which would give the power efficiency for each alternative
of a given type. Following Walsh, Pitman (1948) has defined the
asymptotic relative efficiency of two tests by taking in the limit, under
certain conditions, the reciprocal of the ratio of sample sizes required
to attain the same power against the same alternative at 6 = 6y - ¢
as..e tends.to zero and » to infinity. Mood (1954) shows that the asym-
ptotic relative efﬁcwncy as defined by Pitman is the same as the ratio
of the changes in power as § changes from 6, to 8, 4 ¢ when |8 — 6,

<Livn

It may be noted that Pitman’s result follows dlrectly from that of
Wald (1945) given in connection with his investigations on sequential
analysis. The size of the sample required for a noimal distribution
for specified («, 8, 6, 6, .is given by

o Q=
(6 — 0

where A, and A; are the standardized deviates for the hypothesis 8 = 6,

(5.2

.and 8, respectively for the probabilities (I — «) and 8. When 9, tends

to 6y the above reduces to

_ 1 (dsy .
n =57 (5.3)

We shall now examine the power and the relative efficiency of the
tests developed in this -paper for different values of r and compare them
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with the Wilcoxon’s or Mann and Whitney’s test which corresponds
to W, or T, of the binomial case for r = n. We shall also investigate
the relative efficiency of the various statistics for testing the randon:-
ness of sequences belonging to continuous populations. It may be
observed that, in general, the relative efficiency, as defined by Pitman,
of the statistics considered in this paper for different values of r and of
others of allied forms can equally be ascertained by taking the reci-
procal of the squares of the coefficients of variation of the statistics.
This can be seen from the fact that the expected values of the statistics
are of:the form

E (W, say) = k() a

where k‘(r) is a functioﬁ of r and @, = 2 p,p;. Then

= k@)% | | 5.4)

on the assumption that _da2/d0 is the same for all values of r, it can be »

easily seen that the relative efficiency, which depends on

1 dE k() (a’a2 2 R
de) = g2 26—> s ] . — (5 '5)
is dlrectly proportlonal to the square of the rec1proca1 of the coeﬁicwnt
of varlatlon In view of this fact, we shall be content by examining

the relatlve efficiency of the statistics on the basis of the squares of their
coefﬁcgpt_s of variation.

The efficiency of the-different statistics developed in this paper
has been examined firstly by calculating their powers for different hypo-
theses and alternatives and secondly by finding the squares of their
coefficients of variation. The powers calculated for » = 100 and: 200
and for different values of p’s are tabulated in Tables II to IV. The
powers for different values of r for. Hy: (p = -5 and ¢ = +5) and
(p = -2 and ¢ = -8) are shown in Figs. 1 to 6 for -some alternatives.
In these graphs the curves I, II, III and 1V refer to the statistics T,
W,, W, and T, respectively. A study of the graphs and tables giving
the powers of the various statlsncs for n = 100 leads to the following
conclusions :—

(i) When the null hypothesis is p = -5, ¢ = -5, we find that the
. statistics W,, which are based on all the possible positive (or negative)
differences taken from (n — r 4 1) blocks each consisting of r con-
tiguous observations, are in general more powerful than T, in which
the differences between any two observations occur once only. The




TaBLE II ,
Powers of different tests for -various alternatives in comparing two samples

n="100; . Hy—p =q =0-5

s | s | =10 ,215 ;=18 =20 r=25

' Hypothesis l .

. TR e | owe w2 e |y | | | ow | o | T
p=-50 . .

Ho— 0-0500 | 6+0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 [0-0500/0-0500{0-0500
7=150 : '
p=-45 o ' .

Hy— 0-0533 | 0-0676 | 0-0802 | 0-0886 | 0-0786 | 0-0983 | 0-0866 | 0-1096 | 0-0785 | 0-0872 | 0-1217 | 0-0867 [0-0749|0+1497/0-1483
z=-55

) p=140 ’ . :

“Hy— 0-0767 | 0-1673 | 0.2329-| 0-2728 | 0-2269 | 0-3180 |-0-2608 | 0-3509 | 0-2254 | 0-2626 | 0-3868 | 0-2589 |0-2056(0-4651/0-4496

- g=-60 '
=35 . ' ' i
.- 0-1623 | 0-4185 | 0-5318 | 0-5880 | 0-5258 | 0-6453 | 0-5671 | 0-6695 | 0-5217 | 0-5663 | 0-6992 | 0-5608 |0-4874|0-7671/0-7426
g=-65 ' .
»=-30 . ’
Hy— 0-3655 | 0-7314 | 0-8135 | 0-8484 | 0-8125 | 08815 | 0-8319 | 0-8871 | 0-8082 | 0-8293 | 0-8990 | 0-8242 |0-7824|0-9314/0-9141
=170 :
b= -25 .

Hs— 0-6706 | 0-9315 | 0-9580 | 0-9684 | 0-9589 | 0-9781 | 0-9621 | 0-9775 | 0-9569 | 0-9604 | 0-9799 | 0-9571 |0-94770-9885/0-9824
g=-75 I ’ .

?2=-20 - . . .

Hg— 0-9169 | 0-9931 | 0-9961 | 0-9973 | 0-9964 | 0-9984 | 0-9964 | 0.9981 | 0.9961 | 0-9960 | 0-9983 | 0-9956 |0-9948|0-9993(0-9984
g=-80 : : .

P=-15 . v M . . o . N gmadT
7— .| 49925% | 98752* | 99347* |-99610* | 99458* | 99822* | 09338* | 99726*. |1993627 (-99208%-| 99741* | 99071*. |990.2*|99925* 99725
=85 o] g o -| T . S ‘ . 4
2=-10 T o : ' '
a— . 1-0000 | 1-0000 | 100P0: |-1-0600 |<10000 | 1-0000 | 1-0000 | 1-0000 | 1-0000 | 1-0000 | 1-0000 | 1-0000 [1-0000[1-0000[1 0000
g=-%01| ~ - . . :

- SNOILAGINISIA ALFIIEVHOYd NIVIGED

6




TaABLE II—Contd.

) l r=40 ' r=45 r=>50 7=80 r=90 »=100
Hypothesis — - ,
w, T, ’ w. w, T, ‘ w, 7, we |.. 7, w,' W,or T, |W, or T, .
} p=+50 - " : .
Ho— 0-0500 | 0-0500 | 0-0500-| 0-0500 00500 | 0-0500 |-0-0500 | 00500 | 0-0500 | 0-0500 0-0500 0-0500
g=150 '
=45
CHy— 0-1655 0-1910 0-1813 0-1993 | 0.2233 0-2083 | 0-2475 | 0-2641 | 0-2851 | 0-2784- | 0-053C 02920
g=-55 '
=40 ) . :
Hy— 0-4821 0-5414 | 0-5078 0-5284 0-5872 | 0-5453 | 06170 |-0-6260- |-0:6591 | - 0-6469 0-0719 0-6661
g=+60
: $=+35 :
Hy—- 0-7615 0-8127 | 0.7751 0-7853 | - 0-8369 0-7935 | 0-8520 | 0-8486 | 0-8741 | 0-8639 0-1378 0-8775
g=+65
=30 - -
M- 0-9197 0-9467 0-9233 | 0-9259 0-9543 0-9280 | 0-9592 | 0-9544 |- 0-9670 |- 0-9619 0-2960 0-9681
q:.’]Ol .
p=+25" i
Hg— ©0:9849 0-9912 |- 0-9833 0-9926 0-9835 | 0-9935 | 0-9916-1 0-9951 0-5589 0-9953
g= 75
=.20
. Hg— 0-9984 | 0-9994 | 0-9983 . 0-9995 0-9982 | 0.9996 | 0-9993 | 0-9997 0-8332 0-9997
=80
B p=.15 .
. Hy— 99689* 99945* 99642* 99955* 99566* | 99962* | 99911* | 99978* 0-9769 99980*
g=+85 :
.?=.10 .. - |- . - E
_Hg— 1-0000 10000 1-0000 1-0000 1-0000 |'1-0000 | 10000 | 1-0000 . 0-9997 1-0000
q=.90 .
* Prc;ﬁx 0-99.
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TaBrLE IIT

Powers of different tests for various alternatives in comparing two samples ;
n=100; Hy—p = -20; g = ‘80. :

- r=2 . =5 . r=6 r=10 R . . »=15 - e =20 "
Hypothésis - -
WeorT,| w, 7, W, w, w, T, w, w, ' T, w, 7, T, :
. . p=z‘50 . ) i . . . . - b I e “
Ay — ) 0-9046 | 76483* | 81809% | 85311* | 98515* | 99819* | 98626* 99348 | 1-0000 | 98208% | 98803* | 94723% | 1-0000 o
- =50 Co o ) : ' - . - ' : . ol . -l :
g=" . , =
PRy . . . . | — ~ B
CHe - 0-8847 | 0-9940 | 0-9950 | 0.9957 | 0-9990 | 0-9997 | 0-9991 | 0-9993 | 99571% | 89117* | 89231* 0-9977 | 99997* Z‘ ’
=55 o ' o o ‘ o - - o]
g="9 o P
P » | ; . ; —_ ¢
A= 0-8114 | 0.9610 | 0-9644 | 0-9653 | 0-9784 | 0.9858 0-9809 | 0-9788 | 0-9899 0-9785 | 0-9729 | 0-9712 | 0-9970 E-;
7=-60 ) - : T R =t
. . —
$=-35 - - - - - EEL N
My - ’ 0-6530 | 0-8088 | 0-8149 | 0-8131 | 0-8296 | 0-8471 | 0-8408 0-8218 | 0-8491 | 0-8329  0-8023 | 0-8163 | 0-8914 - o
g="865 ) o ' . ’ o 1 ' ' T &
. <
=30 | S : B
Hs— : 0-4048 | 0-4872 | 0-4916 | 0-4872 | 0-4901 | 0:5016 | 0-5030 | 0-4775 | 0-4951 | 0-4949 | 0-4594 | 0.4823 0-5344 g
. q=_70 . . . . . . R | . . e . K j
- Q
P 1 R : - Sz
Heg~"" 0-1572 | 0-1701 | 0-1712 | ¢-1692 | 0-1675 | 0-1699 | 0-1718 | 0-1629 | 0-1664 | 0-1693 | 0-1605 | 0-1662 0-1769
Cg=-75 ' : B - : o N B N Sy P
Hy— | 0-0500 | 0-0500 | 0:0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500 | 0-0500/ 0-0500 | 0-0500 | 0-0500 | ¢-G530 0-0500
7=-80 o o ‘ - - - | -
‘ B ’?:‘--iﬂ,’j - ‘ ] B . .- R - - . .
Hqp— 0-1957 | 0-2450 |- 0-2471 | 0-2455 | 0-2485 | 0-2539 | 0-2536 | 0-2441 | 0.2523 0:2503 | 0-2370 | 0-2447 | 0-2685 —
. g=-85 i <,
p=-10 BN
Hg— 0-6957 | 0-7818 | 0-7854 | 0-7808 | 0-7809 | 0.7896 | 0-7922 | 0-7691 | 0-7826 | 0-7853 | 0-7528 07750 | 0-8122
g=+90




TasLE III—Contd.

=25 =30 r=45 : .7=50 =80 =100 4
Hypothesis - - - -
wy | ow/ 7, W, Wy 7, 7, W, T, A W,or T,|W, or T}’ g
. A >
=150 . - o N - _y - <]
Hy— 1.0000 | 1-0000 | 57916* | 0-9662 1-0000 | 0-9694 1-0000 1-0000 10000 0-7955 1-0000 e
=50 - I . RN
=45 | - i ! ' . L 5
Hy— 99921*% 99938* 0-9901 0-9446 99932* 0-9536 1.0000 { 1-0000 1.0000 0-7684 | 1-0000 g
g= 55 . . . . ) \ . . g
C 5
: p=1+40 . : . 4
Haz— - - | 0.9898 |.0-9884 | 0-9455 0-8492 | 0.9824 | 0-8813 | 0-9985 0-9959 | 09991 0-6804 | 0-9992 2
g=-60 ‘ 8
o
535 | ! : , . o
Hy— 0-8323 | 0-8195 0.7734 | 0-6360 | 0-7829 .| 0-6972 ; 0-8998 0-8601 0:9144 | 0-5222 0-9163 o
g=+65 ; . o
>
2=-30 : - : . Q
Hs— 0-4699 | 04561 0-4587 | 0-3554 | 0-4226 | 0-4089 | 0:5374 | 0-4899 0-5563 0-3144 | 0.5588 g
g=110 . . : « s
: p=25 b : - =
He— 0-1579 0-1481 0-1599 | 0-1318 0-1441 0-1497 | 0-1766 0-1624 | 0-1822 | 0-1284 | 0-1829 7
’ g=-T75 . =
B=-20 D I . E
Hy— 0.0500 | 0-0500 | 0.0500 | 0:0500 | 0-0500 | 0-0500 | 0-0500 0-0500 | 0-0500 | 0-0500 | 0-0500 5
g=-80 : E”
p="15 ' ' : a
H;~ - | 0.2433 | 0.2383 | 0-2316 | 0-1913 0.2263 | 0.2087 | 0-2701 0-2517 | 0-2778 0-1550 | 0-2788
g=.85 . : ) )
2=-10 e - . : :
5= 0-7603 | 0-.7481 0-7499 0:6398 | 0-7174 | 0-7025 0-8130 | 0-7762 | 0-8263 | 0-5569 | 0-8281
g=-90

* Prefix 0-99.




TABLE IV

. Powers of different tests for various alternatives in comparing two samples
n=200; Hy—p=4q="50

»=20

=30

r =40

7=60

r=80

w,

\ w,

.
W,

wy

W,

w,'

0-0500

0-0500 _

0-0500 .

0-0500+

10-0500 -

00500

0.0545

0-0918

0-1156

0-3343

0-0539

0-4665

0-0960

0-7485

0-2595

-0-7585

09219

0-0864

0-6014

0-9982

0-9124

83861*

90374*

88499*

82930

96249*

95841*

95174*

99476*

64288*"

99896*

99937+

99911*

99834*

99973%

99961*

99941*

1:0000

99946*

1.0000

1-0000-

1-0000

1-0000

98251%

1.0000
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. GrarH 1. Power of the tests for different values of », n = 100; H,: p, = -5;
H: py=-45.

powers of both W, and T, increase with r, attain their maximum values

and then gradually decrease. In fact, the power for even r =2 is .
slightly more than that for r = n and the two statistics W, and T, are
identical in these two cases. Also, the value of the maximum power

for W, is more than that for T,: The table below explairs the posi-

tion more clearl_y in regard to the maximum power, ’
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GrapH 2. Power of the tests for different values of r, n = 100; H,: Py =-5;

Pl = '49.
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S

Alternative hypothesis Hy

Maxiniﬁrﬁ’poﬁver with the corresponding »

W

|

T,

Power

” l Po;w'lér

45
40
<35 i

-30

.25 |

+20

15

+55
-60
-85
<70
+75
-80
-85

0872
2626
5671
-8319
9621
-0064
+999935

18
- 15
15
15
15
10

-0786
-9269
-5258
-8125
-9589
-9964
-999946

10
10
10
10
10
10

" 10

2800+

2250

GRAPH 4. Power of the tests for different va lues of r, n = 100; Hy: py = +2;

H: p= -15.
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PROBABILITY OF REJECTING THE HYPOTHESIS Ho.

GraPH 5. Power of the tests for different values of », n = 100; Hy: p, = ‘2
Hl: P = -25. . (:’ '

(i) When the null hypothesis is p = -/2, g =8, we find that
the statistics W, are generally more powerful than ‘T, ouly when the
alternative hypotheses (p = -5, 45 and -40). are far removed from
Ho, r taking values 15 to 20, otherwis¢ T, exhibit greater power than
W,. The following table summarises the information given in

Table III as regards maximum power.
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GRAPH 6. Power of the tests for different values of r,n=100; Hy: p, = -2;
Popp =35
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A]temateHhi’pothesis Maximum power with the coxirzgs:[)’_?i-nding »”
w, T,

3 g

Power ” Power 7
-50 .50 +999935 15 | -99986 10
45 .55 9993 15 -9991 .10
-40 -60 -9788 15 | -9809 _ 10
-35 -65 -8296 10 -8408 10
30 70 -4901 10 . 5080 10
.25 -75 -1692 6 -1718 10
.15 -85 2485 10 .2536 10
.10 .90 1809 10 7922 10

(iii) As regards T’ its power uniformly increases as r increases in
all the cases‘an‘d' reaches a maximum only at r =n. Regarding W,
it would be noticed that its power, even though it increases with increas-
ing riexcepting for a few cases, is always less than that of T, with the
only exception. of r = n, when W,’ is equal to 7,’. However, the
powers of bothi“W,’ and T, are generally more than those of W, and
T,. The results for n = 200 are almost similar to that of n = 100.
In this case the power of W, is maximum for r ranging from 20 to 30.

It would be seen that; in general, T,” is more powerful than any
of the other tests W,, T, and W,. But, for testing the randomness
of a sequence of observations from a continuous population, T,” can-
not be used as it becomes a constant quantity and hence its distribu-
tion does not exist. The appropriate test to be used in this situation
is only W, or T,. . '

However, when we are concernéd with testing the homogeneity
of two samples from continuous distributions f (x) and g (x), it is pos-
sible to use 7,” and in that case T,” would be the most powerful test
for this purpose. It may be remarked that in this case T, would cor-
respond to Mann and Whitney’s U-test which is closely related
to Wilcoxon’s T-test and for .which the power, as compared to the
t-test, has beeri shown to be equal to 3/m for normal distributions.
Thus, the tests based on 7,' and also T, and W, appear to be more
powerful than even the Wilcoxon’s test and possibly t-test also,
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~ As has already been explained, the asymptotic -relative efficiency
of two tests can'be obtained by comparing the reciprocals of the squares
of the coefficients of variation on the assumption that da,/d6 is constant
throughout the sequence. In view of this fact, it follows that the
asymptotic relative efficiency of a test can be taken to be inversely
proportional to its square of the coefficient of variation. Therefore, the
test with the least coefficient of variation can be considered to be the
best test. Tables V to VII give the squares of the coefficients of variation
(c.v.) for the different tests considéred in this paper for sequences from
continuous as well as discontinuous distributions. From Table V
it would be seen that for » = 50, 100 and infinity, the (c.v.)? for both
W, and T, decreases with r, reaches a minimum and then steadily increases.
However the fall and the increase in (c.».)? is mofe' rapid for T, than
for W, in the beginning and the end, thus giving’a smaler value of
(c.v.)? for T, than W,. Butin between the values of {¢.v.)?, are less for
W, than T,, the former having the lowest value and therefore the sta-
tistic W, is to be preferred to T, in general. For n.= 50 and 100;
the values of r for which (c.v.)? is minimum are near about 10 and 15
respectively. It would further be seen that the ratios of the minimum
to the maximum (c.v.)2for n = 50 and 100 vary from 5 to 8. Since
the maximum (c.v.)? corresponds to the Mann and Whitney’s or Wil-
coxon’s test, for which the relative efficiency is 3/= as compared to
the z-test, it would follow that the efficiency of the tests developed in
this paper appear to be more than the s-test. It may, however, be
emphasized that the tests discussed here are not really comparable
with the z-test because the latter completely ignores the order of occur-
rence of the observations while the W’s and T”s are based on the order
or time of occurrence of the observations.

The tables showing the (c.v.)? for different values of p and ¢ cor-
responding to discontinuous distributions confirm in general the findings
of the power curves. The (c.v.)? for the statistics T, and W,’ is minimum
for r = n, both for n = 100 and 200. Examining W, and T, it would
be seen that there is not much difference between the minimum values,
though W, has a lower minimum than 7, when p is near about -5,
When p is far removed from -5, T, is minimum. These minimum values
occur at ¥ == 10 or 15 for n = 100. When » = 200, this minimum

occurs for r = 20 to 30.

Thus it would be seenn that both from the points of view of power
and asymptotic relative efficiency, as seen from (c.v.)?, the tests based
on W, are superior to T, when p is not far removed from -5. When

.p 1s near about' -2, T, is better. In cases where W, and T, can be

11
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‘ . TABLE .VI : .
(C.V.)2 of different statistics for n = 100
r=2 r=5 »=10 r=15 »=18 7»=20
Hypothesis | —
' N I Wy 7, | 7| w w, ’ 7 1 w, \w; | w, | 7, |

T' 7‘1‘, r r r r r r r r r T r T T
?: <50 3 R . . = - .

103 101 30 19 5 19 12 16 10 20 17 9 17 23 6
7="50 v .-
p=45 . : :

107 105 34 23 19 24 16 21 15 24 21 13 22 | 27 10
g=1+55
p=-+40 . . . - — .

120 118 47 37 33 37 - 29 35 29 37 35 27 36 41 23
7=160
=35 . .

143 141 70 61 57 60 52 60 54 62 62 53 63 65 48
g=1+65
#=+30. )

180 178 107 100 96 98 89 101 94 100 103 94 105 104 84
7=-70
p=-25 ) : - ;

. 238 235 165 162 156 158 147 165 156 160 168 158 170 166 143
g="+795 . . .
p=-20 |- . : : ,

330 327 259 260 253 253 240 266 257 257 272 260 277 264 238
g=-80
p=-+15 R
491 487 | 421 430 422 418 402 443 431 425 | 454 | 438 | 461 | 435 | 402
7=-85 1
p= -10 - . N
821 816 754 779 768 756 735 807 789 769 825 804 839 785 738
g= +90

SNOLLAEIYLSIA ALITIEVEOYd NIVLYAD
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(C.V.)2 of different statistics for n = 200

TABLE VII

SNOLLNENLSIA ALITIEVHOdYd NIVLYED

r=2 =10 »=20 »=30 =40 »=60 =80 »=200
. Hypothesis
W" WF’ Wl’ Wl’ WT Wf WT’ Wf' Wf, W}‘ er
=150 .
51 50 8 5 5 6 2 1 1 68 0-5
g=1+50
= 45 .
53 . 52 10 8 8 9 4 4 4 71 3
=55
= 40 . .
59 59 17 14 15 16 11 12 12 79 9
g=-60
p=+35 .
71 70 29 27 28 29 25 26 27 94 20
g=-65
p=-30
89 88 48 46 48 51 45 48 50 119 39
g=-70
p=125 . .
118 117 7. 77 80 84 78 83 87 157 67
g="+75
p=-20
164 163 124 126 131 137 130 138 146 218 113
g=180 .
p=-15 ) . C . . -
244 243 207 212 220 229 - 221 235 249’ 325 193
=85 o
p=-10 - . : ’
408 407 376 ‘387 + 402 419 407 434 459 543 - 356
g7=-90 : :

91
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used, T, (= W,/) is far more powerful than W,or T, and therefore ,

T, shou]d be preferred to W, and T,.

6. SUMMARY

The paper deals with the distributions of a number of statistics
W, W/, T,, and T, defined for a sequence of » random observations
from a continuous or discontinuous distribution. In the case of con-
tinuous distribution the observations take values from — co to” 4 co
while for the discontinuous case the values taken are 6,<< 8, << 5+ << 6,
with probabilities p;, p,, - -+ p, and include the cases of both free and
non-free sampling. The statistics W, refer to total number of
positive or negative differences between all possible pairs of observa-
tions considered according to the order of occurrence in moving blocks
of r contiguous observations. Thus in a sequence of n observations

there will be (n — r - 1) blocks each yielding (;) differences. W,’

is composed of the total number of positive and negative differences

(excluding the zeroes). T, is obtained by taking the number of posi-
. tive or negative differences between pairs of observations, x;, x; in
the sequence such that (j—i)<<r—1. T, includes both positive
and negative differences mentioned above for 7,. It may be observed
that in the case of W-statistics the difference from any pair of observa-
tions will be repeated a number of times on account of overlapping
while in T-statistics any .of the differences will occur once only. When
‘the distributions are continuous, the statistics W,” and T,” are constant
for a given sequence irrespective of its order of occurrence for a given
r and therefore their distributions do not exist. But all the statistics
are definable and useful for testing the homogeneity of two or more
samples from continuous distributions. This is done by pooling the
samples together and arranging them in ascending or descending order
and identifying the observations as 1, 2, 3, etc., according as they belong
to samples 1, 2, 3, etc., respectively as in the case of Wald and
Wolfowitz’s U-statistics. - ' g g -

It has been shown that the distributions of all these statistics tend
to the normal form as » tends:to infinity, The standardized deviates
of these statistics can serve as tests for examining (i) the randomness
of a given sequence of observations and (ii) the homogeneity of two
or more samples. :

Detailed examination- of the- powers and asymptotic relative effi-
ciency’ (A.R.E.) of these stqt_;'stiz'c.v shows that when_qver W(’ and T’

P,
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are applicable, T, is the most powerful of all the tests for r = n.
Though W, and T, are less powerful and less efficient than W, and
T/, in general W, is more powerful and asymptotically more efficient
than T,. The powers and A.R.E. of W, and T, increase with r, attain
a maximum and then gradually fall off. The maximum power and
A.R.E. attained for W, and T, are much more than those for Mann
and Whitney’s or Wilcoxon’s test the A.R.E. of which as compared
to t-test is 3/77 The corresponding A.R.E. for W, or T, having maxi-
mum power appears to be more than unity. In fact, even for the mini-
mum value of r, that is 2, the power and A.R.E. for W, and T, are
slightly more than those for r.=n which corresponds to Wllcoxon s
test.

Thus the statistics developed in this paper lead to non-parametric
tests which are more powerful than those developed so far. Further
investigations are in progress. o

Our sincere thanks are due to Shri S. P. Varma for having helped
us in the tedious calculations regarding the powers and A.R.E.’s given
in this paper. : :
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